عامل
\left(x-5\right)\left(x+1\right)\left(3x^{2}-2x+1\right)
ارزیابی
\left(x-5\right)\left(x+1\right)\left(3x^{2}-2x+1\right)
گراف
اشتراک گذاشتن
رونوشتشده در تخته یادداشت
\left(x-5\right)\left(3x^{3}+x^{2}-x+1\right)
بر اساس قضیه ریشه گویا، تمام ریشههای گویای یک چندجملهای به شکل \frac{p}{q} هستند، که در آن p به عبارت ثابت -5 و q به عامل پیشگام 3 تقسیم میشود. یکی از این ریشهها 5 است. با تقسیم این چندجملهای به x-5، از آن فاکتور بگیرید.
\left(x+1\right)\left(3x^{2}-2x+1\right)
3x^{3}+x^{2}-x+1 را در نظر بگیرید. بر اساس قضیه ریشه گویا، تمام ریشههای گویای یک چندجملهای به شکل \frac{p}{q} هستند، که در آن p به عبارت ثابت 1 و q به عامل پیشگام 3 تقسیم میشود. یکی از این ریشهها -1 است. با تقسیم این چندجملهای به x+1، از آن فاکتور بگیرید.
\left(x-5\right)\left(3x^{2}-2x+1\right)\left(x+1\right)
عبارت فاکتورگیریشده کامل را بازنویسی کنید. از چندجملهای 3x^{2}-2x+1 فاکتور گرفته نشده زیرا هیچ ریشه گویایی ندارد.
نمونه
معادله درجه دوم
{ x } ^ { 2 } - 4 x - 5 = 0
مثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادله خطی
y = 3x + 4
حساب
699 * 533
ماتریس
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادله همزمان
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
تمایز
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ادغام
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
محدودیت
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}