برای t حل کنید
t<\frac{11}{2}
مسابقه
Algebra
3 t + 1 < t + 12
اشتراک گذاشتن
رونوشتشده در تخته یادداشت
3t+1-t<12
t را از هر دو طرف تفریق کنید.
2t+1<12
3t و -t را برای به دست آوردن 2t ترکیب کنید.
2t<12-1
1 را از هر دو طرف تفریق کنید.
2t<11
تفریق 1 را از 12 برای به دست آوردن 11 تفریق کنید.
t<\frac{11}{2}
هر دو طرف بر 2 تقسیم شوند. از آنجا که 2 مثبت است، جهت نابرابری همان طور باقی می ماند.
نمونه
معادله درجه دوم
{ x } ^ { 2 } - 4 x - 5 = 0
مثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادله خطی
y = 3x + 4
حساب
699 * 533
ماتریس
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادله همزمان
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
تمایز
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ادغام
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
محدودیت
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}