برای x حل کنید
x=-\frac{1}{3}\approx -0.333333333
x=-1
گراف
اشتراک گذاشتن
رونوشتشده در تخته یادداشت
3\left(x^{2}+2x+1\right)=2x+2
از قضیه دو جملهای \left(a+b\right)^{2}=a^{2}+2ab+b^{2} برای گسترش \left(x+1\right)^{2} استفاده کنید.
3x^{2}+6x+3=2x+2
از اموال توزیعی برای ضرب 3 در x^{2}+2x+1 استفاده کنید.
3x^{2}+6x+3-2x=2
2x را از هر دو طرف تفریق کنید.
3x^{2}+4x+3=2
6x و -2x را برای به دست آوردن 4x ترکیب کنید.
3x^{2}+4x+3-2=0
2 را از هر دو طرف تفریق کنید.
3x^{2}+4x+1=0
تفریق 2 را از 3 برای به دست آوردن 1 تفریق کنید.
a+b=4 ab=3\times 1=3
برای حل معادله، با گروهبندی سمت چپ از آن فاکتور بگیرید. ابتدا، سمت چپ باید بهصورت 3x^{2}+ax+bx+1 بازنویسی شود. برای یافتن a و b، دستگاهی را که باید حل شود تشکیل دهید.
a=1 b=3
از آنجا که ab مثبت است، a و b هم علامت هستند. از آنجا که a+b مثبت است، a و b هر دو مثبت هستند. تنها جواب دستگاه این زوج است.
\left(3x^{2}+x\right)+\left(3x+1\right)
3x^{2}+4x+1 را بهعنوان \left(3x^{2}+x\right)+\left(3x+1\right) بازنویسی کنید.
x\left(3x+1\right)+3x+1
از x در 3x^{2}+x فاکتور بگیرید.
\left(3x+1\right)\left(x+1\right)
با استفاده از خاصیت توزیعپذیری، از جمله مشترک 3x+1 فاکتور بگیرید.
x=-\frac{1}{3} x=-1
برای پیدا کردن جوابهای معادله، 3x+1=0 و x+1=0 را حل کنید.
3\left(x^{2}+2x+1\right)=2x+2
از قضیه دو جملهای \left(a+b\right)^{2}=a^{2}+2ab+b^{2} برای گسترش \left(x+1\right)^{2} استفاده کنید.
3x^{2}+6x+3=2x+2
از اموال توزیعی برای ضرب 3 در x^{2}+2x+1 استفاده کنید.
3x^{2}+6x+3-2x=2
2x را از هر دو طرف تفریق کنید.
3x^{2}+4x+3=2
6x و -2x را برای به دست آوردن 4x ترکیب کنید.
3x^{2}+4x+3-2=0
2 را از هر دو طرف تفریق کنید.
3x^{2}+4x+1=0
تفریق 2 را از 3 برای به دست آوردن 1 تفریق کنید.
x=\frac{-4±\sqrt{4^{2}-4\times 3}}{2\times 3}
این معادله به صورت استاندارد است: ax^{2}+bx+c=0. 3 را با a، 4 را با b و 1 را با c در فرمول درجه دوم، \frac{-b±\sqrt{b^{2}-4ac}}{2a} جایگزین کنید.
x=\frac{-4±\sqrt{16-4\times 3}}{2\times 3}
4 را مجذور کنید.
x=\frac{-4±\sqrt{16-12}}{2\times 3}
-4 بار 3.
x=\frac{-4±\sqrt{4}}{2\times 3}
16 را به -12 اضافه کنید.
x=\frac{-4±2}{2\times 3}
ریشه دوم 4 را به دست آورید.
x=\frac{-4±2}{6}
2 بار 3.
x=-\frac{2}{6}
اکنون معادله x=\frac{-4±2}{6} را وقتی که ± مثبت است حل کنید. -4 را به 2 اضافه کنید.
x=-\frac{1}{3}
کسر \frac{-2}{6} را با ریشه گرفتن و ساده کردن 2، به کمترین عبارتها کاهش دهید.
x=-\frac{6}{6}
اکنون معادله x=\frac{-4±2}{6} وقتی که ± منفی است حل کنید. 2 را از -4 تفریق کنید.
x=-1
-6 را بر 6 تقسیم کنید.
x=-\frac{1}{3} x=-1
این معادله اکنون حل شده است.
3\left(x^{2}+2x+1\right)=2x+2
از قضیه دو جملهای \left(a+b\right)^{2}=a^{2}+2ab+b^{2} برای گسترش \left(x+1\right)^{2} استفاده کنید.
3x^{2}+6x+3=2x+2
از اموال توزیعی برای ضرب 3 در x^{2}+2x+1 استفاده کنید.
3x^{2}+6x+3-2x=2
2x را از هر دو طرف تفریق کنید.
3x^{2}+4x+3=2
6x و -2x را برای به دست آوردن 4x ترکیب کنید.
3x^{2}+4x=2-3
3 را از هر دو طرف تفریق کنید.
3x^{2}+4x=-1
تفریق 3 را از 2 برای به دست آوردن -1 تفریق کنید.
\frac{3x^{2}+4x}{3}=-\frac{1}{3}
هر دو طرف بر 3 تقسیم شوند.
x^{2}+\frac{4}{3}x=-\frac{1}{3}
تقسیم بر 3، ضرب در 3 را لغو میکند.
x^{2}+\frac{4}{3}x+\left(\frac{2}{3}\right)^{2}=-\frac{1}{3}+\left(\frac{2}{3}\right)^{2}
\frac{4}{3}، ضريب جمله x را بر 2 تقسیم کنید تا حاصل \frac{2}{3} شود. سپس مجذور \frac{2}{3} را به هر دو طرف معادله اضافه کنید. این مرحله، طرف چپ معادله را به یک مربع کامل تبدیل میکند.
x^{2}+\frac{4}{3}x+\frac{4}{9}=-\frac{1}{3}+\frac{4}{9}
\frac{2}{3} را با مجذور کردن صورت کسر و مخرج کسر مجذور کنید.
x^{2}+\frac{4}{3}x+\frac{4}{9}=\frac{1}{9}
با یافتن یک مخرج مشترک و اضافه کردن صورت کسرها، -\frac{1}{3} را به \frac{4}{9} اضافه کنید. سپس در صورت امکان، کسر را به کمترین حالت ممکن ساده کنید.
\left(x+\frac{2}{3}\right)^{2}=\frac{1}{9}
عامل x^{2}+\frac{4}{3}x+\frac{4}{9}. در مجموع، هرگاه x^{2}+bx+c یک مربع کامل باشد میتواند همیشه به عنوان \left(x+\frac{b}{2}\right)^{2} فاکتورگیری شود.
\sqrt{\left(x+\frac{2}{3}\right)^{2}}=\sqrt{\frac{1}{9}}
ریشه دوم هر دو طرف معادله را به دست آورید.
x+\frac{2}{3}=\frac{1}{3} x+\frac{2}{3}=-\frac{1}{3}
ساده کنید.
x=-\frac{1}{3} x=-1
\frac{2}{3} را از هر دو طرف معادله تفریق کنید.
نمونه
معادله درجه دوم
{ x } ^ { 2 } - 4 x - 5 = 0
مثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادله خطی
y = 3x + 4
حساب
699 * 533
ماتریس
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادله همزمان
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
تمایز
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ادغام
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
محدودیت
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}