پرش به محتوای اصلی
برای x حل کنید
Tick mark Image
گراف

مشکلات مشابه از جستجوی وب

اشتراک گذاشتن

a+b=5 ab=3\left(-2\right)=-6
برای حل معادله، با گروه‌بندی سمت چپ از آن فاکتور بگیرید. ابتدا، سمت چپ باید به‌صورت 3x^{2}+ax+bx-2 بازنویسی شود. برای یافتن a و b، دستگاهی را که باید حل شود تشکیل دهید.
-1,6 -2,3
از آنجا که ab منفی است، a و b علامت مخالف هم دارند. از آنجا که a+b مثبت است، عدد مثبت قدر مطلق بزرگتری نسبت به عدد منفی دارد. تمام جفت‌های صحیح را که حاصلشان -6 است فهرست کنید.
-1+6=5 -2+3=1
مجموع هر زوج را محاسبه کنید.
a=-1 b=6
جواب زوجی است که مجموع آن 5 است.
\left(3x^{2}-x\right)+\left(6x-2\right)
3x^{2}+5x-2 را به‌عنوان \left(3x^{2}-x\right)+\left(6x-2\right) بازنویسی کنید.
x\left(3x-1\right)+2\left(3x-1\right)
در گروه اول از x و در گروه دوم از 2 فاکتور بگیرید.
\left(3x-1\right)\left(x+2\right)
با استفاده از خاصیت توزیع‌پذیری، از جمله مشترک 3x-1 فاکتور بگیرید.
x=\frac{1}{3} x=-2
برای پیدا کردن جواب‌های معادله، 3x-1=0 و x+2=0 را حل کنید.
3x^{2}+5x-2=0
همه معادله‌های به صورت ax^{2}+bx+c=0 را می‌توان با استفاده از فرمول درجه دوم حل کرد: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. فرمول درجه دوم دو راه‌حل ارائه می‌کند، یکی زمانی که ± یک به‌علاوه و دیگری زمامی که یک تفریق است.
x=\frac{-5±\sqrt{5^{2}-4\times 3\left(-2\right)}}{2\times 3}
این معادله به صورت استاندارد است: ax^{2}+bx+c=0. 3 را با a، 5 را با b و -2 را با c در فرمول درجه دوم، \frac{-b±\sqrt{b^{2}-4ac}}{2a} جایگزین کنید.
x=\frac{-5±\sqrt{25-4\times 3\left(-2\right)}}{2\times 3}
5 را مجذور کنید.
x=\frac{-5±\sqrt{25-12\left(-2\right)}}{2\times 3}
-4 بار 3.
x=\frac{-5±\sqrt{25+24}}{2\times 3}
-12 بار -2.
x=\frac{-5±\sqrt{49}}{2\times 3}
25 را به 24 اضافه کنید.
x=\frac{-5±7}{2\times 3}
ریشه دوم 49 را به دست آورید.
x=\frac{-5±7}{6}
2 بار 3.
x=\frac{2}{6}
اکنون معادله x=\frac{-5±7}{6} را وقتی که ± مثبت است حل کنید. -5 را به 7 اضافه کنید.
x=\frac{1}{3}
کسر \frac{2}{6} را با ریشه گرفتن و ساده کردن 2، به کمترین عبارت‌ها کاهش دهید.
x=-\frac{12}{6}
اکنون معادله x=\frac{-5±7}{6} وقتی که ± منفی است حل کنید. 7 را از -5 تفریق کنید.
x=-2
-12 را بر 6 تقسیم کنید.
x=\frac{1}{3} x=-2
این معادله اکنون حل شده است.
3x^{2}+5x-2=0
معادلات درجه دوم مانند این مورد را می‌توان با تکمیل مربع حل کرد. به منظور تکمیل مربع، معادله باید ابتدا در قالب x^{2}+bx=c باشد.
3x^{2}+5x-2-\left(-2\right)=-\left(-2\right)
2 را به هر دو طرف معامله اضافه کنید.
3x^{2}+5x=-\left(-2\right)
تفریق -2 از خودش برابر با 0 می‌شود.
3x^{2}+5x=2
-2 را از 0 تفریق کنید.
\frac{3x^{2}+5x}{3}=\frac{2}{3}
هر دو طرف بر 3 تقسیم شوند.
x^{2}+\frac{5}{3}x=\frac{2}{3}
تقسیم بر 3، ضرب در 3 را لغو می‌کند.
x^{2}+\frac{5}{3}x+\left(\frac{5}{6}\right)^{2}=\frac{2}{3}+\left(\frac{5}{6}\right)^{2}
\frac{5}{3}، ضريب جمله x را بر 2 تقسیم کنید تا حاصل \frac{5}{6} شود. سپس مجذور \frac{5}{6} را به هر دو طرف معادله اضافه کنید. این مرحله، طرف چپ معادله را به یک مربع کامل تبدیل می‌کند.
x^{2}+\frac{5}{3}x+\frac{25}{36}=\frac{2}{3}+\frac{25}{36}
\frac{5}{6} را با مجذور کردن صورت کسر و مخرج کسر مجذور کنید.
x^{2}+\frac{5}{3}x+\frac{25}{36}=\frac{49}{36}
با یافتن یک مخرج مشترک و اضافه کردن صورت کسرها، \frac{2}{3} را به \frac{25}{36} اضافه کنید. سپس در صورت امکان، کسر را به کم‌ترین حالت ممکن ساده کنید.
\left(x+\frac{5}{6}\right)^{2}=\frac{49}{36}
عامل x^{2}+\frac{5}{3}x+\frac{25}{36}. در مجموع، هرگاه x^{2}+bx+c یک مربع کامل باشد می‌تواند همیشه به عنوان \left(x+\frac{b}{2}\right)^{2} فاکتورگیری شود.
\sqrt{\left(x+\frac{5}{6}\right)^{2}}=\sqrt{\frac{49}{36}}
ریشه دوم هر دو طرف معادله را به دست آورید.
x+\frac{5}{6}=\frac{7}{6} x+\frac{5}{6}=-\frac{7}{6}
ساده کنید.
x=\frac{1}{3} x=-2
\frac{5}{6} را از هر دو طرف معادله تفریق کنید.