ارزیابی
14
اشتراک گذاشتن
رونوشتشده در تخته یادداشت
22\times \frac{1}{2}+4\left(\sin(60)\right)^{2}
مقدار \sin(30) را از جدول ارزش های مثلثاتی دریافت کنید.
11+4\left(\sin(60)\right)^{2}
22 و \frac{1}{2} را برای دستیابی به 11 ضرب کنید.
11+4\times \left(\frac{\sqrt{3}}{2}\right)^{2}
مقدار \sin(60) را از جدول ارزش های مثلثاتی دریافت کنید.
11+4\times \frac{\left(\sqrt{3}\right)^{2}}{2^{2}}
برای به توان رساندن \frac{\sqrt{3}}{2}، صورت و مخرج کسر را به توان برسانید و سپس تقسیم کنید.
11+\frac{4\left(\sqrt{3}\right)^{2}}{2^{2}}
4\times \frac{\left(\sqrt{3}\right)^{2}}{2^{2}} را به عنوان یک کسر تکی نشان دهید.
\frac{11\times 2^{2}}{2^{2}}+\frac{4\left(\sqrt{3}\right)^{2}}{2^{2}}
برای اضافه کردن یا تفریق عبارتها، آنها را گسترش دهید تا مخرج آنها یکی شود. 11 بار \frac{2^{2}}{2^{2}}.
\frac{11\times 2^{2}+4\left(\sqrt{3}\right)^{2}}{2^{2}}
از آنجا که \frac{11\times 2^{2}}{2^{2}} و \frac{4\left(\sqrt{3}\right)^{2}}{2^{2}} دارای مخرج مشترک هستند، با افزودن صورت کسرها آنها را جمع کنید.
11+\frac{4\times 3}{2^{2}}
مجذور \sqrt{3} عبارت است از 3.
11+\frac{12}{2^{2}}
4 و 3 را برای دستیابی به 12 ضرب کنید.
11+\frac{12}{4}
2 را به توان 2 محاسبه کنید و 4 را به دست آورید.
11+3
12 را بر 4 برای به دست آوردن 3 تقسیم کنید.
14
11 و 3 را برای دریافت 14 اضافه کنید.
نمونه
معادله درجه دوم
{ x } ^ { 2 } - 4 x - 5 = 0
مثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادله خطی
y = 3x + 4
حساب
699 * 533
ماتریس
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادله همزمان
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
تمایز
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ادغام
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
محدودیت
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}