پرش به محتوای اصلی
برای x حل کنید (complex solution)
Tick mark Image
گراف

مشکلات مشابه از جستجوی وب

اشتراک گذاشتن

2x^{2}+3x+273=0
همه معادله‌های به صورت ax^{2}+bx+c=0 را می‌توان با استفاده از فرمول درجه دوم حل کرد: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. فرمول درجه دوم دو راه‌حل ارائه می‌کند، یکی زمانی که ± یک به‌علاوه و دیگری زمامی که یک تفریق است.
x=\frac{-3±\sqrt{3^{2}-4\times 2\times 273}}{2\times 2}
این معادله به صورت استاندارد است: ax^{2}+bx+c=0. 2 را با a، 3 را با b و 273 را با c در فرمول درجه دوم، \frac{-b±\sqrt{b^{2}-4ac}}{2a} جایگزین کنید.
x=\frac{-3±\sqrt{9-4\times 2\times 273}}{2\times 2}
3 را مجذور کنید.
x=\frac{-3±\sqrt{9-8\times 273}}{2\times 2}
-4 بار 2.
x=\frac{-3±\sqrt{9-2184}}{2\times 2}
-8 بار 273.
x=\frac{-3±\sqrt{-2175}}{2\times 2}
9 را به -2184 اضافه کنید.
x=\frac{-3±5\sqrt{87}i}{2\times 2}
ریشه دوم -2175 را به دست آورید.
x=\frac{-3±5\sqrt{87}i}{4}
2 بار 2.
x=\frac{-3+5\sqrt{87}i}{4}
اکنون معادله x=\frac{-3±5\sqrt{87}i}{4} را وقتی که ± مثبت است حل کنید. -3 را به 5i\sqrt{87} اضافه کنید.
x=\frac{-5\sqrt{87}i-3}{4}
اکنون معادله x=\frac{-3±5\sqrt{87}i}{4} وقتی که ± منفی است حل کنید. 5i\sqrt{87} را از -3 تفریق کنید.
x=\frac{-3+5\sqrt{87}i}{4} x=\frac{-5\sqrt{87}i-3}{4}
این معادله اکنون حل شده است.
2x^{2}+3x+273=0
معادلات درجه دوم مانند این مورد را می‌توان با تکمیل مربع حل کرد. به منظور تکمیل مربع، معادله باید ابتدا در قالب x^{2}+bx=c باشد.
2x^{2}+3x+273-273=-273
273 را از هر دو طرف معادله تفریق کنید.
2x^{2}+3x=-273
تفریق 273 از خودش برابر با 0 می‌شود.
\frac{2x^{2}+3x}{2}=-\frac{273}{2}
هر دو طرف بر 2 تقسیم شوند.
x^{2}+\frac{3}{2}x=-\frac{273}{2}
تقسیم بر 2، ضرب در 2 را لغو می‌کند.
x^{2}+\frac{3}{2}x+\left(\frac{3}{4}\right)^{2}=-\frac{273}{2}+\left(\frac{3}{4}\right)^{2}
\frac{3}{2}، ضريب جمله x را بر 2 تقسیم کنید تا حاصل \frac{3}{4} شود. سپس مجذور \frac{3}{4} را به هر دو طرف معادله اضافه کنید. این مرحله، طرف چپ معادله را به یک مربع کامل تبدیل می‌کند.
x^{2}+\frac{3}{2}x+\frac{9}{16}=-\frac{273}{2}+\frac{9}{16}
\frac{3}{4} را با مجذور کردن صورت کسر و مخرج کسر مجذور کنید.
x^{2}+\frac{3}{2}x+\frac{9}{16}=-\frac{2175}{16}
با یافتن یک مخرج مشترک و اضافه کردن صورت کسرها، -\frac{273}{2} را به \frac{9}{16} اضافه کنید. سپس در صورت امکان، کسر را به کم‌ترین حالت ممکن ساده کنید.
\left(x+\frac{3}{4}\right)^{2}=-\frac{2175}{16}
عامل x^{2}+\frac{3}{2}x+\frac{9}{16}. در مجموع، هرگاه x^{2}+bx+c یک مربع کامل باشد می‌تواند همیشه به عنوان \left(x+\frac{b}{2}\right)^{2} فاکتورگیری شود.
\sqrt{\left(x+\frac{3}{4}\right)^{2}}=\sqrt{-\frac{2175}{16}}
ریشه دوم هر دو طرف معادله را به دست آورید.
x+\frac{3}{4}=\frac{5\sqrt{87}i}{4} x+\frac{3}{4}=-\frac{5\sqrt{87}i}{4}
ساده کنید.
x=\frac{-3+5\sqrt{87}i}{4} x=\frac{-5\sqrt{87}i-3}{4}
\frac{3}{4} را از هر دو طرف معادله تفریق کنید.