برای x حل کنید (complex solution)
x=\frac{\sqrt{47}i}{20}+\frac{1}{4}\approx 0.25+0.34278273i
x=-\frac{\sqrt{47}i}{20}+\frac{1}{4}\approx 0.25-0.34278273i
گراف
اشتراک گذاشتن
رونوشتشده در تخته یادداشت
100x^{2}-50x+18=0
همه معادلههای به صورت ax^{2}+bx+c=0 را میتوان با استفاده از فرمول درجه دوم حل کرد: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. فرمول درجه دوم دو راهحل ارائه میکند، یکی زمانی که ± یک بهعلاوه و دیگری زمامی که یک تفریق است.
x=\frac{-\left(-50\right)±\sqrt{\left(-50\right)^{2}-4\times 100\times 18}}{2\times 100}
این معادله به صورت استاندارد است: ax^{2}+bx+c=0. 100 را با a، -50 را با b و 18 را با c در فرمول درجه دوم، \frac{-b±\sqrt{b^{2}-4ac}}{2a} جایگزین کنید.
x=\frac{-\left(-50\right)±\sqrt{2500-4\times 100\times 18}}{2\times 100}
-50 را مجذور کنید.
x=\frac{-\left(-50\right)±\sqrt{2500-400\times 18}}{2\times 100}
-4 بار 100.
x=\frac{-\left(-50\right)±\sqrt{2500-7200}}{2\times 100}
-400 بار 18.
x=\frac{-\left(-50\right)±\sqrt{-4700}}{2\times 100}
2500 را به -7200 اضافه کنید.
x=\frac{-\left(-50\right)±10\sqrt{47}i}{2\times 100}
ریشه دوم -4700 را به دست آورید.
x=\frac{50±10\sqrt{47}i}{2\times 100}
متضاد -50 عبارت است از 50.
x=\frac{50±10\sqrt{47}i}{200}
2 بار 100.
x=\frac{50+10\sqrt{47}i}{200}
اکنون معادله x=\frac{50±10\sqrt{47}i}{200} را وقتی که ± مثبت است حل کنید. 50 را به 10i\sqrt{47} اضافه کنید.
x=\frac{\sqrt{47}i}{20}+\frac{1}{4}
50+10i\sqrt{47} را بر 200 تقسیم کنید.
x=\frac{-10\sqrt{47}i+50}{200}
اکنون معادله x=\frac{50±10\sqrt{47}i}{200} وقتی که ± منفی است حل کنید. 10i\sqrt{47} را از 50 تفریق کنید.
x=-\frac{\sqrt{47}i}{20}+\frac{1}{4}
50-10i\sqrt{47} را بر 200 تقسیم کنید.
x=\frac{\sqrt{47}i}{20}+\frac{1}{4} x=-\frac{\sqrt{47}i}{20}+\frac{1}{4}
این معادله اکنون حل شده است.
100x^{2}-50x+18=0
معادلات درجه دوم مانند این مورد را میتوان با تکمیل مربع حل کرد. به منظور تکمیل مربع، معادله باید ابتدا در قالب x^{2}+bx=c باشد.
100x^{2}-50x+18-18=-18
18 را از هر دو طرف معادله تفریق کنید.
100x^{2}-50x=-18
تفریق 18 از خودش برابر با 0 میشود.
\frac{100x^{2}-50x}{100}=-\frac{18}{100}
هر دو طرف بر 100 تقسیم شوند.
x^{2}+\left(-\frac{50}{100}\right)x=-\frac{18}{100}
تقسیم بر 100، ضرب در 100 را لغو میکند.
x^{2}-\frac{1}{2}x=-\frac{18}{100}
کسر \frac{-50}{100} را با ریشه گرفتن و ساده کردن 50، به کمترین عبارتها کاهش دهید.
x^{2}-\frac{1}{2}x=-\frac{9}{50}
کسر \frac{-18}{100} را با ریشه گرفتن و ساده کردن 2، به کمترین عبارتها کاهش دهید.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=-\frac{9}{50}+\left(-\frac{1}{4}\right)^{2}
-\frac{1}{2}، ضريب جمله x را بر 2 تقسیم کنید تا حاصل -\frac{1}{4} شود. سپس مجذور -\frac{1}{4} را به هر دو طرف معادله اضافه کنید. این مرحله، طرف چپ معادله را به یک مربع کامل تبدیل میکند.
x^{2}-\frac{1}{2}x+\frac{1}{16}=-\frac{9}{50}+\frac{1}{16}
-\frac{1}{4} را با مجذور کردن صورت کسر و مخرج کسر مجذور کنید.
x^{2}-\frac{1}{2}x+\frac{1}{16}=-\frac{47}{400}
با یافتن یک مخرج مشترک و اضافه کردن صورت کسرها، -\frac{9}{50} را به \frac{1}{16} اضافه کنید. سپس در صورت امکان، کسر را به کمترین حالت ممکن ساده کنید.
\left(x-\frac{1}{4}\right)^{2}=-\frac{47}{400}
عامل x^{2}-\frac{1}{2}x+\frac{1}{16}. در مجموع، هرگاه x^{2}+bx+c یک مربع کامل باشد میتواند همیشه به عنوان \left(x+\frac{b}{2}\right)^{2} فاکتورگیری شود.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{-\frac{47}{400}}
ریشه دوم هر دو طرف معادله را به دست آورید.
x-\frac{1}{4}=\frac{\sqrt{47}i}{20} x-\frac{1}{4}=-\frac{\sqrt{47}i}{20}
ساده کنید.
x=\frac{\sqrt{47}i}{20}+\frac{1}{4} x=-\frac{\sqrt{47}i}{20}+\frac{1}{4}
\frac{1}{4} را به هر دو طرف معامله اضافه کنید.
نمونه
معادله درجه دوم
{ x } ^ { 2 } - 4 x - 5 = 0
مثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادله خطی
y = 3x + 4
حساب
699 * 533
ماتریس
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادله همزمان
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
تمایز
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ادغام
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
محدودیت
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}