برای x حل کنید
x=-3
x=1
گراف
اشتراک گذاشتن
رونوشتشده در تخته یادداشت
-x^{2}-2x+3=0
هر دو طرف بر 3 تقسیم شوند.
a+b=-2 ab=-3=-3
برای حل معادله، با گروهبندی سمت چپ از آن فاکتور بگیرید. ابتدا، سمت چپ باید بهصورت -x^{2}+ax+bx+3 بازنویسی شود. برای یافتن a و b، دستگاهی را که باید حل شود تشکیل دهید.
a=1 b=-3
از آنجا که ab منفی است، a و b علامت مخالف هم دارند. از آنجا که a+b منفی است، عدد منفی قدر مطلق بزرگتری نسبت به عدد مثبت دارد. تنها جواب دستگاه این زوج است.
\left(-x^{2}+x\right)+\left(-3x+3\right)
-x^{2}-2x+3 را بهعنوان \left(-x^{2}+x\right)+\left(-3x+3\right) بازنویسی کنید.
x\left(-x+1\right)+3\left(-x+1\right)
در گروه اول از x و در گروه دوم از 3 فاکتور بگیرید.
\left(-x+1\right)\left(x+3\right)
با استفاده از خاصیت توزیعپذیری، از جمله مشترک -x+1 فاکتور بگیرید.
x=1 x=-3
برای پیدا کردن جوابهای معادله، -x+1=0 و x+3=0 را حل کنید.
-3x^{2}-6x+9=0
همه معادلههای به صورت ax^{2}+bx+c=0 را میتوان با استفاده از فرمول درجه دوم حل کرد: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. فرمول درجه دوم دو راهحل ارائه میکند، یکی زمانی که ± یک بهعلاوه و دیگری زمامی که یک تفریق است.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-3\right)\times 9}}{2\left(-3\right)}
این معادله به صورت استاندارد است: ax^{2}+bx+c=0. -3 را با a، -6 را با b و 9 را با c در فرمول درجه دوم، \frac{-b±\sqrt{b^{2}-4ac}}{2a} جایگزین کنید.
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-3\right)\times 9}}{2\left(-3\right)}
-6 را مجذور کنید.
x=\frac{-\left(-6\right)±\sqrt{36+12\times 9}}{2\left(-3\right)}
-4 بار -3.
x=\frac{-\left(-6\right)±\sqrt{36+108}}{2\left(-3\right)}
12 بار 9.
x=\frac{-\left(-6\right)±\sqrt{144}}{2\left(-3\right)}
36 را به 108 اضافه کنید.
x=\frac{-\left(-6\right)±12}{2\left(-3\right)}
ریشه دوم 144 را به دست آورید.
x=\frac{6±12}{2\left(-3\right)}
متضاد -6 عبارت است از 6.
x=\frac{6±12}{-6}
2 بار -3.
x=\frac{18}{-6}
اکنون معادله x=\frac{6±12}{-6} را وقتی که ± مثبت است حل کنید. 6 را به 12 اضافه کنید.
x=-3
18 را بر -6 تقسیم کنید.
x=-\frac{6}{-6}
اکنون معادله x=\frac{6±12}{-6} وقتی که ± منفی است حل کنید. 12 را از 6 تفریق کنید.
x=1
-6 را بر -6 تقسیم کنید.
x=-3 x=1
این معادله اکنون حل شده است.
-3x^{2}-6x+9=0
معادلات درجه دوم مانند این مورد را میتوان با تکمیل مربع حل کرد. به منظور تکمیل مربع، معادله باید ابتدا در قالب x^{2}+bx=c باشد.
-3x^{2}-6x+9-9=-9
9 را از هر دو طرف معادله تفریق کنید.
-3x^{2}-6x=-9
تفریق 9 از خودش برابر با 0 میشود.
\frac{-3x^{2}-6x}{-3}=-\frac{9}{-3}
هر دو طرف بر -3 تقسیم شوند.
x^{2}+\left(-\frac{6}{-3}\right)x=-\frac{9}{-3}
تقسیم بر -3، ضرب در -3 را لغو میکند.
x^{2}+2x=-\frac{9}{-3}
-6 را بر -3 تقسیم کنید.
x^{2}+2x=3
-9 را بر -3 تقسیم کنید.
x^{2}+2x+1^{2}=3+1^{2}
2، ضريب جمله x را بر 2 تقسیم کنید تا حاصل 1 شود. سپس مجذور 1 را به هر دو طرف معادله اضافه کنید. این مرحله، طرف چپ معادله را به یک مربع کامل تبدیل میکند.
x^{2}+2x+1=3+1
1 را مجذور کنید.
x^{2}+2x+1=4
3 را به 1 اضافه کنید.
\left(x+1\right)^{2}=4
عامل x^{2}+2x+1. در مجموع، هرگاه x^{2}+bx+c یک مربع کامل باشد میتواند همیشه به عنوان \left(x+\frac{b}{2}\right)^{2} فاکتورگیری شود.
\sqrt{\left(x+1\right)^{2}}=\sqrt{4}
ریشه دوم هر دو طرف معادله را به دست آورید.
x+1=2 x+1=-2
ساده کنید.
x=1 x=-3
1 را از هر دو طرف معادله تفریق کنید.
نمونه
معادله درجه دوم
{ x } ^ { 2 } - 4 x - 5 = 0
مثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادله خطی
y = 3x + 4
حساب
699 * 533
ماتریس
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادله همزمان
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
تمایز
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ادغام
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
محدودیت
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}