پرش به محتوای اصلی
برای x حل کنید
Tick mark Image
گراف

مشکلات مشابه از جستجوی وب

اشتراک گذاشتن

a+b=2 ab=-\left(-1\right)=1
برای حل معادله، با گروه‌بندی سمت چپ از آن فاکتور بگیرید. ابتدا، سمت چپ باید به‌صورت -x^{2}+ax+bx-1 بازنویسی شود. برای یافتن a و b، دستگاهی را که باید حل شود تشکیل دهید.
a=1 b=1
از آنجا که ab مثبت است، a و b هم علامت هستند. از آنجا که a+b مثبت است، a و b هر دو مثبت هستند. تنها جواب دستگاه این زوج است.
\left(-x^{2}+x\right)+\left(x-1\right)
-x^{2}+2x-1 را به‌عنوان \left(-x^{2}+x\right)+\left(x-1\right) بازنویسی کنید.
-x\left(x-1\right)+x-1
از -x در -x^{2}+x فاکتور بگیرید.
\left(x-1\right)\left(-x+1\right)
با استفاده از خاصیت توزیع‌پذیری، از جمله مشترک x-1 فاکتور بگیرید.
x=1 x=1
برای پیدا کردن جواب‌های معادله، x-1=0 و -x+1=0 را حل کنید.
-x^{2}+2x-1=0
همه معادله‌های به صورت ax^{2}+bx+c=0 را می‌توان با استفاده از فرمول درجه دوم حل کرد: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. فرمول درجه دوم دو راه‌حل ارائه می‌کند، یکی زمانی که ± یک به‌علاوه و دیگری زمامی که یک تفریق است.
x=\frac{-2±\sqrt{2^{2}-4\left(-1\right)\left(-1\right)}}{2\left(-1\right)}
این معادله به صورت استاندارد است: ax^{2}+bx+c=0. -1 را با a، 2 را با b و -1 را با c در فرمول درجه دوم، \frac{-b±\sqrt{b^{2}-4ac}}{2a} جایگزین کنید.
x=\frac{-2±\sqrt{4-4\left(-1\right)\left(-1\right)}}{2\left(-1\right)}
2 را مجذور کنید.
x=\frac{-2±\sqrt{4+4\left(-1\right)}}{2\left(-1\right)}
-4 بار -1.
x=\frac{-2±\sqrt{4-4}}{2\left(-1\right)}
4 بار -1.
x=\frac{-2±\sqrt{0}}{2\left(-1\right)}
4 را به -4 اضافه کنید.
x=-\frac{2}{2\left(-1\right)}
ریشه دوم 0 را به دست آورید.
x=-\frac{2}{-2}
2 بار -1.
x=1
-2 را بر -2 تقسیم کنید.
-x^{2}+2x-1=0
معادلات درجه دوم مانند این مورد را می‌توان با تکمیل مربع حل کرد. به منظور تکمیل مربع، معادله باید ابتدا در قالب x^{2}+bx=c باشد.
-x^{2}+2x-1-\left(-1\right)=-\left(-1\right)
1 را به هر دو طرف معامله اضافه کنید.
-x^{2}+2x=-\left(-1\right)
تفریق -1 از خودش برابر با 0 می‌شود.
-x^{2}+2x=1
-1 را از 0 تفریق کنید.
\frac{-x^{2}+2x}{-1}=\frac{1}{-1}
هر دو طرف بر -1 تقسیم شوند.
x^{2}+\frac{2}{-1}x=\frac{1}{-1}
تقسیم بر -1، ضرب در -1 را لغو می‌کند.
x^{2}-2x=\frac{1}{-1}
2 را بر -1 تقسیم کنید.
x^{2}-2x=-1
1 را بر -1 تقسیم کنید.
x^{2}-2x+1=-1+1
-2، ضريب جمله x را بر 2 تقسیم کنید تا حاصل -1 شود. سپس مجذور -1 را به هر دو طرف معادله اضافه کنید. این مرحله، طرف چپ معادله را به یک مربع کامل تبدیل می‌کند.
x^{2}-2x+1=0
-1 را به 1 اضافه کنید.
\left(x-1\right)^{2}=0
عامل x^{2}-2x+1. در مجموع، هرگاه x^{2}+bx+c یک مربع کامل باشد می‌تواند همیشه به عنوان \left(x+\frac{b}{2}\right)^{2} فاکتورگیری شود.
\sqrt{\left(x-1\right)^{2}}=\sqrt{0}
ریشه دوم هر دو طرف معادله را به دست آورید.
x-1=0 x-1=0
ساده کنید.
x=1 x=1
1 را به هر دو طرف معامله اضافه کنید.
x=1
این معادله اکنون حل شده است. راهکارها مشابه هستند.