ارزیابی
x^{6}+1
مشتق گرفتن w.r.t. x
6x^{5}
گراف
اشتراک گذاشتن
رونوشتشده در تخته یادداشت
\left(x^{2}\left(x^{2}-\sqrt{3}x\right)+x^{2}+x^{2}-\sqrt{3}x+1\right)\left(x^{2}+\sqrt{3}x+1\right)
از اموال توزیعی برای ضرب x^{2}+1 در x^{2}-\sqrt{3}x+1 استفاده کنید.
\left(x^{2}-\sqrt{3}x\right)x^{4}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x^{3}+2x^{2}\left(x^{2}-\sqrt{3}x\right)+x^{4}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1
از ویژگی توزیعی برای ضرب x^{2}\left(x^{2}-\sqrt{3}x\right)+x^{2}+x^{2}-\sqrt{3}x+1 در x^{2}+\sqrt{3}x+1 استفاده و اصطلاحات مشابه را با هم یکی کنید.
x^{6}-\sqrt{3}x^{5}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x^{3}+2x^{2}\left(x^{2}-\sqrt{3}x\right)+x^{4}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1
از اموال توزیعی برای ضرب x^{2}-\sqrt{3}x در x^{4} استفاده کنید.
x^{6}-\sqrt{3}x^{5}+\left(x^{2}\sqrt{3}-x\left(\sqrt{3}\right)^{2}\right)x^{3}+2x^{2}\left(x^{2}-\sqrt{3}x\right)+x^{4}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1
از اموال توزیعی برای ضرب x^{2}-\sqrt{3}x در \sqrt{3} استفاده کنید.
x^{6}-\sqrt{3}x^{5}+\left(x^{2}\sqrt{3}-x\times 3\right)x^{3}+2x^{2}\left(x^{2}-\sqrt{3}x\right)+x^{4}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1
مجذور \sqrt{3} عبارت است از 3.
x^{6}-\sqrt{3}x^{5}+\left(x^{2}\sqrt{3}-3x\right)x^{3}+2x^{2}\left(x^{2}-\sqrt{3}x\right)+x^{4}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1
-1 و 3 را برای دستیابی به -3 ضرب کنید.
x^{6}-\sqrt{3}x^{5}+\sqrt{3}x^{5}-3x^{4}+2x^{2}\left(x^{2}-\sqrt{3}x\right)+x^{4}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1
از اموال توزیعی برای ضرب x^{2}\sqrt{3}-3x در x^{3} استفاده کنید.
x^{6}-3x^{4}+2x^{2}\left(x^{2}-\sqrt{3}x\right)+x^{4}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1
-\sqrt{3}x^{5} و \sqrt{3}x^{5} را برای به دست آوردن 0 ترکیب کنید.
x^{6}-3x^{4}+2x^{4}-2\sqrt{3}x^{3}+x^{4}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1
از اموال توزیعی برای ضرب 2x^{2} در x^{2}-\sqrt{3}x استفاده کنید.
x^{6}-x^{4}-2\sqrt{3}x^{3}+x^{4}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1
-3x^{4} و 2x^{4} را برای به دست آوردن -x^{4} ترکیب کنید.
x^{6}-2\sqrt{3}x^{3}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1
-x^{4} و x^{4} را برای به دست آوردن 0 ترکیب کنید.
x^{6}-\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1
-2\sqrt{3}x^{3} و \sqrt{3}x^{3} را برای به دست آوردن -\sqrt{3}x^{3} ترکیب کنید.
x^{6}-\sqrt{3}x^{3}+2x^{2}+\left(x^{2}\sqrt{3}-x\left(\sqrt{3}\right)^{2}\right)x+x^{2}-\sqrt{3}x+\sqrt{3}x+1
از اموال توزیعی برای ضرب x^{2}-\sqrt{3}x در \sqrt{3} استفاده کنید.
x^{6}-\sqrt{3}x^{3}+2x^{2}+\left(x^{2}\sqrt{3}-x\times 3\right)x+x^{2}-\sqrt{3}x+\sqrt{3}x+1
مجذور \sqrt{3} عبارت است از 3.
x^{6}-\sqrt{3}x^{3}+2x^{2}+\left(x^{2}\sqrt{3}-3x\right)x+x^{2}-\sqrt{3}x+\sqrt{3}x+1
-1 و 3 را برای دستیابی به -3 ضرب کنید.
x^{6}-\sqrt{3}x^{3}+2x^{2}+\sqrt{3}x^{3}-3x^{2}+x^{2}-\sqrt{3}x+\sqrt{3}x+1
از اموال توزیعی برای ضرب x^{2}\sqrt{3}-3x در x استفاده کنید.
x^{6}+2x^{2}-3x^{2}+x^{2}-\sqrt{3}x+\sqrt{3}x+1
-\sqrt{3}x^{3} و \sqrt{3}x^{3} را برای به دست آوردن 0 ترکیب کنید.
x^{6}-x^{2}+x^{2}-\sqrt{3}x+\sqrt{3}x+1
2x^{2} و -3x^{2} را برای به دست آوردن -x^{2} ترکیب کنید.
x^{6}-\sqrt{3}x+\sqrt{3}x+1
-x^{2} و x^{2} را برای به دست آوردن 0 ترکیب کنید.
x^{6}+1
-\sqrt{3}x و \sqrt{3}x را برای به دست آوردن 0 ترکیب کنید.
\frac{\mathrm{d}}{\mathrm{d}x}(\left(x^{2}\left(x^{2}-\sqrt{3}x\right)+x^{2}+x^{2}-\sqrt{3}x+1\right)\left(x^{2}+\sqrt{3}x+1\right))
از اموال توزیعی برای ضرب x^{2}+1 در x^{2}-\sqrt{3}x+1 استفاده کنید.
\frac{\mathrm{d}}{\mathrm{d}x}(\left(x^{2}-\sqrt{3}x\right)x^{4}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x^{3}+2x^{2}\left(x^{2}-\sqrt{3}x\right)+x^{4}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1)
از ویژگی توزیعی برای ضرب x^{2}\left(x^{2}-\sqrt{3}x\right)+x^{2}+x^{2}-\sqrt{3}x+1 در x^{2}+\sqrt{3}x+1 استفاده و اصطلاحات مشابه را با هم یکی کنید.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}-\sqrt{3}x^{5}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x^{3}+2x^{2}\left(x^{2}-\sqrt{3}x\right)+x^{4}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1)
از اموال توزیعی برای ضرب x^{2}-\sqrt{3}x در x^{4} استفاده کنید.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}-\sqrt{3}x^{5}+\left(x^{2}\sqrt{3}-x\left(\sqrt{3}\right)^{2}\right)x^{3}+2x^{2}\left(x^{2}-\sqrt{3}x\right)+x^{4}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1)
از اموال توزیعی برای ضرب x^{2}-\sqrt{3}x در \sqrt{3} استفاده کنید.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}-\sqrt{3}x^{5}+\left(x^{2}\sqrt{3}-x\times 3\right)x^{3}+2x^{2}\left(x^{2}-\sqrt{3}x\right)+x^{4}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1)
مجذور \sqrt{3} عبارت است از 3.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}-\sqrt{3}x^{5}+\left(x^{2}\sqrt{3}-3x\right)x^{3}+2x^{2}\left(x^{2}-\sqrt{3}x\right)+x^{4}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1)
-1 و 3 را برای دستیابی به -3 ضرب کنید.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}-\sqrt{3}x^{5}+\sqrt{3}x^{5}-3x^{4}+2x^{2}\left(x^{2}-\sqrt{3}x\right)+x^{4}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1)
از اموال توزیعی برای ضرب x^{2}\sqrt{3}-3x در x^{3} استفاده کنید.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}-3x^{4}+2x^{2}\left(x^{2}-\sqrt{3}x\right)+x^{4}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1)
-\sqrt{3}x^{5} و \sqrt{3}x^{5} را برای به دست آوردن 0 ترکیب کنید.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}-3x^{4}+2x^{4}-2\sqrt{3}x^{3}+x^{4}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1)
از اموال توزیعی برای ضرب 2x^{2} در x^{2}-\sqrt{3}x استفاده کنید.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}-x^{4}-2\sqrt{3}x^{3}+x^{4}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1)
-3x^{4} و 2x^{4} را برای به دست آوردن -x^{4} ترکیب کنید.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}-2\sqrt{3}x^{3}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1)
-x^{4} و x^{4} را برای به دست آوردن 0 ترکیب کنید.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}-\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1)
-2\sqrt{3}x^{3} و \sqrt{3}x^{3} را برای به دست آوردن -\sqrt{3}x^{3} ترکیب کنید.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}-\sqrt{3}x^{3}+2x^{2}+\left(x^{2}\sqrt{3}-x\left(\sqrt{3}\right)^{2}\right)x+x^{2}-\sqrt{3}x+\sqrt{3}x+1)
از اموال توزیعی برای ضرب x^{2}-\sqrt{3}x در \sqrt{3} استفاده کنید.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}-\sqrt{3}x^{3}+2x^{2}+\left(x^{2}\sqrt{3}-x\times 3\right)x+x^{2}-\sqrt{3}x+\sqrt{3}x+1)
مجذور \sqrt{3} عبارت است از 3.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}-\sqrt{3}x^{3}+2x^{2}+\left(x^{2}\sqrt{3}-3x\right)x+x^{2}-\sqrt{3}x+\sqrt{3}x+1)
-1 و 3 را برای دستیابی به -3 ضرب کنید.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}-\sqrt{3}x^{3}+2x^{2}+\sqrt{3}x^{3}-3x^{2}+x^{2}-\sqrt{3}x+\sqrt{3}x+1)
از اموال توزیعی برای ضرب x^{2}\sqrt{3}-3x در x استفاده کنید.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}+2x^{2}-3x^{2}+x^{2}-\sqrt{3}x+\sqrt{3}x+1)
-\sqrt{3}x^{3} و \sqrt{3}x^{3} را برای به دست آوردن 0 ترکیب کنید.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}-x^{2}+x^{2}-\sqrt{3}x+\sqrt{3}x+1)
2x^{2} و -3x^{2} را برای به دست آوردن -x^{2} ترکیب کنید.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}-\sqrt{3}x+\sqrt{3}x+1)
-x^{2} و x^{2} را برای به دست آوردن 0 ترکیب کنید.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}+1)
-\sqrt{3}x و \sqrt{3}x را برای به دست آوردن 0 ترکیب کنید.
6x^{6-1}
مشتق یک چند جملهای، مجموع مشتقهای عبارتهای آن است. مشتق یک عبارت ثابت 0 است. مشتق ax^{n} برابر است با nax^{n-1}.
6x^{5}
1 را از 6 تفریق کنید.
نمونه
معادله درجه دوم
{ x } ^ { 2 } - 4 x - 5 = 0
مثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادله خطی
y = 3x + 4
حساب
699 * 533
ماتریس
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادله همزمان
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
تمایز
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ادغام
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
محدودیت
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}