پرش به محتوای اصلی
برای x حل کنید
Tick mark Image
برای x حل کنید (complex solution)
Tick mark Image
گراف

مشکلات مشابه از جستجوی وب

اشتراک گذاشتن

5^{x+5}=\frac{1}{25}
طرفین معادله را جابجا کنید تا همه جملات متغیر در سمت چپ قرار گیرند.
\log(5^{x+5})=\log(\frac{1}{25})
لگاریتم هر دو طرف معادله را به دست آورید.
\left(x+5\right)\log(5)=\log(\frac{1}{25})
لگاریتم یک عدد که به یک توان رسیده است، تعداد توان لگاریتم عدد است.
x+5=\frac{\log(\frac{1}{25})}{\log(5)}
هر دو طرف بر \log(5) تقسیم شوند.
x+5=\log_{5}\left(\frac{1}{25}\right)
با تغییر فرمول پایه \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
x=-2-5
5 را از هر دو طرف معادله تفریق کنید.