ارزیابی
x^{2}
بسط دادن
x^{2}
گراف
اشتراک گذاشتن
رونوشتشده در تخته یادداشت
\frac{1}{4}x^{2}-x+1+\left(\frac{1}{2}x-1\right)\left(\frac{1}{2}x+1\right)+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
از قضیه دو جملهای \left(a-b\right)^{2}=a^{2}-2ab+b^{2} برای گسترش \left(\frac{1}{2}x-1\right)^{2} استفاده کنید.
\frac{1}{4}x^{2}-x+1+\left(\frac{1}{2}x\right)^{2}-1+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
\left(\frac{1}{2}x-1\right)\left(\frac{1}{2}x+1\right) را در نظر بگیرید. عمل ضرب را میتوان با استفاده از قاعده \left(a-b\right)\left(a+b\right)=a^{2}-b^{2} به تفاضل مربعها تغییر داد. 1 را مجذور کنید.
\frac{1}{4}x^{2}-x+1+\left(\frac{1}{2}\right)^{2}x^{2}-1+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
\left(\frac{1}{2}x\right)^{2} را بسط دهید.
\frac{1}{4}x^{2}-x+1+\frac{1}{4}x^{2}-1+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
\frac{1}{2} را به توان 2 محاسبه کنید و \frac{1}{4} را به دست آورید.
\frac{1}{2}x^{2}-x+1-1+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
\frac{1}{4}x^{2} و \frac{1}{4}x^{2} را برای به دست آوردن \frac{1}{2}x^{2} ترکیب کنید.
\frac{1}{2}x^{2}-x+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
تفریق 1 را از 1 برای به دست آوردن 0 تفریق کنید.
\frac{1}{2}x^{2}-x+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x\right)^{2}-1
\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right) را در نظر بگیرید. عمل ضرب را میتوان با استفاده از قاعده \left(a-b\right)\left(a+b\right)=a^{2}-b^{2} به تفاضل مربعها تغییر داد. 1 را مجذور کنید.
\frac{1}{2}x^{2}-x+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}\right)^{2}x^{2}-1
\left(-\frac{1}{2}x\right)^{2} را بسط دهید.
\frac{1}{2}x^{2}-x+\left(\frac{1}{2}x+1\right)^{2}+\frac{1}{4}x^{2}-1
-\frac{1}{2} را به توان 2 محاسبه کنید و \frac{1}{4} را به دست آورید.
\frac{3}{4}x^{2}-x+\left(\frac{1}{2}x+1\right)^{2}-1
\frac{1}{2}x^{2} و \frac{1}{4}x^{2} را برای به دست آوردن \frac{3}{4}x^{2} ترکیب کنید.
\frac{3}{4}x^{2}-x+\frac{1}{4}x^{2}+x+1-1
از قضیه دو جملهای \left(a+b\right)^{2}=a^{2}+2ab+b^{2} برای گسترش \left(\frac{1}{2}x+1\right)^{2} استفاده کنید.
x^{2}-x+x+1-1
\frac{3}{4}x^{2} و \frac{1}{4}x^{2} را برای به دست آوردن x^{2} ترکیب کنید.
x^{2}+1-1
-x و x را برای به دست آوردن 0 ترکیب کنید.
x^{2}
تفریق 1 را از 1 برای به دست آوردن 0 تفریق کنید.
\frac{1}{4}x^{2}-x+1+\left(\frac{1}{2}x-1\right)\left(\frac{1}{2}x+1\right)+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
از قضیه دو جملهای \left(a-b\right)^{2}=a^{2}-2ab+b^{2} برای گسترش \left(\frac{1}{2}x-1\right)^{2} استفاده کنید.
\frac{1}{4}x^{2}-x+1+\left(\frac{1}{2}x\right)^{2}-1+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
\left(\frac{1}{2}x-1\right)\left(\frac{1}{2}x+1\right) را در نظر بگیرید. عمل ضرب را میتوان با استفاده از قاعده \left(a-b\right)\left(a+b\right)=a^{2}-b^{2} به تفاضل مربعها تغییر داد. 1 را مجذور کنید.
\frac{1}{4}x^{2}-x+1+\left(\frac{1}{2}\right)^{2}x^{2}-1+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
\left(\frac{1}{2}x\right)^{2} را بسط دهید.
\frac{1}{4}x^{2}-x+1+\frac{1}{4}x^{2}-1+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
\frac{1}{2} را به توان 2 محاسبه کنید و \frac{1}{4} را به دست آورید.
\frac{1}{2}x^{2}-x+1-1+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
\frac{1}{4}x^{2} و \frac{1}{4}x^{2} را برای به دست آوردن \frac{1}{2}x^{2} ترکیب کنید.
\frac{1}{2}x^{2}-x+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
تفریق 1 را از 1 برای به دست آوردن 0 تفریق کنید.
\frac{1}{2}x^{2}-x+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x\right)^{2}-1
\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right) را در نظر بگیرید. عمل ضرب را میتوان با استفاده از قاعده \left(a-b\right)\left(a+b\right)=a^{2}-b^{2} به تفاضل مربعها تغییر داد. 1 را مجذور کنید.
\frac{1}{2}x^{2}-x+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}\right)^{2}x^{2}-1
\left(-\frac{1}{2}x\right)^{2} را بسط دهید.
\frac{1}{2}x^{2}-x+\left(\frac{1}{2}x+1\right)^{2}+\frac{1}{4}x^{2}-1
-\frac{1}{2} را به توان 2 محاسبه کنید و \frac{1}{4} را به دست آورید.
\frac{3}{4}x^{2}-x+\left(\frac{1}{2}x+1\right)^{2}-1
\frac{1}{2}x^{2} و \frac{1}{4}x^{2} را برای به دست آوردن \frac{3}{4}x^{2} ترکیب کنید.
\frac{3}{4}x^{2}-x+\frac{1}{4}x^{2}+x+1-1
از قضیه دو جملهای \left(a+b\right)^{2}=a^{2}+2ab+b^{2} برای گسترش \left(\frac{1}{2}x+1\right)^{2} استفاده کنید.
x^{2}-x+x+1-1
\frac{3}{4}x^{2} و \frac{1}{4}x^{2} را برای به دست آوردن x^{2} ترکیب کنید.
x^{2}+1-1
-x و x را برای به دست آوردن 0 ترکیب کنید.
x^{2}
تفریق 1 را از 1 برای به دست آوردن 0 تفریق کنید.
نمونه
معادله درجه دوم
{ x } ^ { 2 } - 4 x - 5 = 0
مثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادله خطی
y = 3x + 4
حساب
699 * 533
ماتریس
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادله همزمان
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
تمایز
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ادغام
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
محدودیت
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}