برای x حل کنید (complex solution)
x\in \sqrt{5}e^{\frac{-\arctan(\frac{2\sqrt{29}}{3})i+2\pi i}{3}},\sqrt{5}e^{-\frac{\arctan(\frac{2\sqrt{29}}{3})i}{3}},\sqrt{5}e^{\frac{-\arctan(\frac{2\sqrt{29}}{3})i+4\pi i}{3}},\sqrt{5}e^{\frac{\arctan(\frac{2\sqrt{29}}{3})i+4\pi i}{3}},\sqrt{5}e^{\frac{\arctan(\frac{2\sqrt{29}}{3})i}{3}},\sqrt{5}e^{\frac{\arctan(\frac{2\sqrt{29}}{3})i+2\pi i}{3}}
گراف
اشتراک گذاشتن
رونوشتشده در تخته یادداشت
x^{6}=6x^{3}-125
5 را به توان 3 محاسبه کنید و 125 را به دست آورید.
x^{6}-6x^{3}=-125
6x^{3} را از هر دو طرف تفریق کنید.
x^{6}-6x^{3}+125=0
125 را به هر دو طرف اضافه کنید.
t^{2}-6t+125=0
t به جای x^{3} جایگزین شود.
t=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 1\times 125}}{2}
همه معادلات به شکل ax^{2}+bx+c=0 را میتوان با استفاده از فرمول درجه دوم حل کرد: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. در فرمول درجه دوم 1 را با a، -6 را با b، و 125 را با c جایگزین کنید.
t=\frac{6±\sqrt{-464}}{2}
محاسبات را انجام دهید.
t=3+2\sqrt{29}i t=-2\sqrt{29}i+3
معادله t=\frac{6±\sqrt{-464}}{2} را یک بار وقتی ± بهعلاوه است و یک بار وقتی ± منها است حل کنید.
x=\sqrt{5}e^{\frac{\arctan(\frac{2\sqrt{29}}{3})i+4\pi i}{3}} x=\sqrt{5}e^{\frac{\arctan(\frac{2\sqrt{29}}{3})i+2\pi i}{3}} x=\sqrt{5}e^{\frac{\arctan(\frac{2\sqrt{29}}{3})i}{3}} x=\sqrt{5}e^{-\frac{\arctan(\frac{2\sqrt{29}}{3})i}{3}} x=\sqrt{5}e^{\frac{-\arctan(\frac{2\sqrt{29}}{3})i+4\pi i}{3}} x=\sqrt{5}e^{\frac{-\arctan(\frac{2\sqrt{29}}{3})i+2\pi i}{3}}
از آنجا که x=t^{3}، جوابهای معادله با حل آن به ازای هر t بدست میآید.
نمونه
معادله درجه دوم
{ x } ^ { 2 } - 4 x - 5 = 0
مثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادله خطی
y = 3x + 4
حساب
699 * 533
ماتریس
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادله همزمان
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
تمایز
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ادغام
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
محدودیت
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}