پرش به محتوای اصلی
برای x حل کنید
Tick mark Image
گراف

مشکلات مشابه از جستجوی وب

اشتراک گذاشتن

a+b=5 ab=-6
برای حل معادله، با استفاده از فرمول x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) از x^{2}+5x-6 فاکتور بگیرید. برای یافتن a و b، دستگاهی را که باید حل شود تشکیل دهید.
-1,6 -2,3
از آنجا که ab منفی است، a و b علامت مخالف هم دارند. از آنجا که a+b مثبت است، عدد مثبت قدر مطلق بزرگتری نسبت به عدد منفی دارد. تمام جفت‌های صحیح را که حاصلشان -6 است فهرست کنید.
-1+6=5 -2+3=1
مجموع هر زوج را محاسبه کنید.
a=-1 b=6
جواب زوجی است که مجموع آن 5 است.
\left(x-1\right)\left(x+6\right)
با استفاده از مقادیر به دست آمده، عبارت فاکتورگیری‌شده \left(x+a\right)\left(x+b\right) را بازنویسی کنید.
x=1 x=-6
برای پیدا کردن جواب‌های معادله، x-1=0 و x+6=0 را حل کنید.
a+b=5 ab=1\left(-6\right)=-6
برای حل معادله، با گروه‌بندی سمت چپ از آن فاکتور بگیرید. ابتدا، سمت چپ باید به‌صورت x^{2}+ax+bx-6 بازنویسی شود. برای یافتن a و b، دستگاهی را که باید حل شود تشکیل دهید.
-1,6 -2,3
از آنجا که ab منفی است، a و b علامت مخالف هم دارند. از آنجا که a+b مثبت است، عدد مثبت قدر مطلق بزرگتری نسبت به عدد منفی دارد. تمام جفت‌های صحیح را که حاصلشان -6 است فهرست کنید.
-1+6=5 -2+3=1
مجموع هر زوج را محاسبه کنید.
a=-1 b=6
جواب زوجی است که مجموع آن 5 است.
\left(x^{2}-x\right)+\left(6x-6\right)
x^{2}+5x-6 را به‌عنوان \left(x^{2}-x\right)+\left(6x-6\right) بازنویسی کنید.
x\left(x-1\right)+6\left(x-1\right)
در گروه اول از x و در گروه دوم از 6 فاکتور بگیرید.
\left(x-1\right)\left(x+6\right)
با استفاده از خاصیت توزیع‌پذیری، از جمله مشترک x-1 فاکتور بگیرید.
x=1 x=-6
برای پیدا کردن جواب‌های معادله، x-1=0 و x+6=0 را حل کنید.
x^{2}+5x-6=0
همه معادله‌های به صورت ax^{2}+bx+c=0 را می‌توان با استفاده از فرمول درجه دوم حل کرد: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. فرمول درجه دوم دو راه‌حل ارائه می‌کند، یکی زمانی که ± یک به‌علاوه و دیگری زمامی که یک تفریق است.
x=\frac{-5±\sqrt{5^{2}-4\left(-6\right)}}{2}
این معادله به صورت استاندارد است: ax^{2}+bx+c=0. 1 را با a، 5 را با b و -6 را با c در فرمول درجه دوم، \frac{-b±\sqrt{b^{2}-4ac}}{2a} جایگزین کنید.
x=\frac{-5±\sqrt{25-4\left(-6\right)}}{2}
5 را مجذور کنید.
x=\frac{-5±\sqrt{25+24}}{2}
-4 بار -6.
x=\frac{-5±\sqrt{49}}{2}
25 را به 24 اضافه کنید.
x=\frac{-5±7}{2}
ریشه دوم 49 را به دست آورید.
x=\frac{2}{2}
اکنون معادله x=\frac{-5±7}{2} را وقتی که ± مثبت است حل کنید. -5 را به 7 اضافه کنید.
x=1
2 را بر 2 تقسیم کنید.
x=-\frac{12}{2}
اکنون معادله x=\frac{-5±7}{2} وقتی که ± منفی است حل کنید. 7 را از -5 تفریق کنید.
x=-6
-12 را بر 2 تقسیم کنید.
x=1 x=-6
این معادله اکنون حل شده است.
x^{2}+5x-6=0
معادلات درجه دوم مانند این مورد را می‌توان با تکمیل مربع حل کرد. به منظور تکمیل مربع، معادله باید ابتدا در قالب x^{2}+bx=c باشد.
x^{2}+5x-6-\left(-6\right)=-\left(-6\right)
6 را به هر دو طرف معامله اضافه کنید.
x^{2}+5x=-\left(-6\right)
تفریق -6 از خودش برابر با 0 می‌شود.
x^{2}+5x=6
-6 را از 0 تفریق کنید.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=6+\left(\frac{5}{2}\right)^{2}
5، ضريب جمله x را بر 2 تقسیم کنید تا حاصل \frac{5}{2} شود. سپس مجذور \frac{5}{2} را به هر دو طرف معادله اضافه کنید. این مرحله، طرف چپ معادله را به یک مربع کامل تبدیل می‌کند.
x^{2}+5x+\frac{25}{4}=6+\frac{25}{4}
\frac{5}{2} را با مجذور کردن صورت کسر و مخرج کسر مجذور کنید.
x^{2}+5x+\frac{25}{4}=\frac{49}{4}
6 را به \frac{25}{4} اضافه کنید.
\left(x+\frac{5}{2}\right)^{2}=\frac{49}{4}
عامل x^{2}+5x+\frac{25}{4}. در مجموع، هرگاه x^{2}+bx+c یک مربع کامل باشد می‌تواند همیشه به عنوان \left(x+\frac{b}{2}\right)^{2} فاکتورگیری شود.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
ریشه دوم هر دو طرف معادله را به دست آورید.
x+\frac{5}{2}=\frac{7}{2} x+\frac{5}{2}=-\frac{7}{2}
ساده کنید.
x=1 x=-6
\frac{5}{2} را از هر دو طرف معادله تفریق کنید.