پرش به محتوای اصلی
برای x حل کنید
Tick mark Image
گراف

مشکلات مشابه از جستجوی وب

اشتراک گذاشتن

x^{2}+4x-32=0
32 را از هر دو طرف تفریق کنید.
a+b=4 ab=-32
برای حل معادله، با استفاده از فرمول x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) از x^{2}+4x-32 فاکتور بگیرید. برای یافتن a و b، دستگاهی را که باید حل شود تشکیل دهید.
-1,32 -2,16 -4,8
از آنجا که ab منفی است، a و b علامت مخالف هم دارند. از آنجا که a+b مثبت است، عدد مثبت قدر مطلق بزرگتری نسبت به عدد منفی دارد. تمام جفت‌های صحیح را که حاصلشان -32 است فهرست کنید.
-1+32=31 -2+16=14 -4+8=4
مجموع هر زوج را محاسبه کنید.
a=-4 b=8
جواب زوجی است که مجموع آن 4 است.
\left(x-4\right)\left(x+8\right)
با استفاده از مقادیر به دست آمده، عبارت فاکتورگیری‌شده \left(x+a\right)\left(x+b\right) را بازنویسی کنید.
x=4 x=-8
برای پیدا کردن جواب‌های معادله، x-4=0 و x+8=0 را حل کنید.
x^{2}+4x-32=0
32 را از هر دو طرف تفریق کنید.
a+b=4 ab=1\left(-32\right)=-32
برای حل معادله، با گروه‌بندی سمت چپ از آن فاکتور بگیرید. ابتدا، سمت چپ باید به‌صورت x^{2}+ax+bx-32 بازنویسی شود. برای یافتن a و b، دستگاهی را که باید حل شود تشکیل دهید.
-1,32 -2,16 -4,8
از آنجا که ab منفی است، a و b علامت مخالف هم دارند. از آنجا که a+b مثبت است، عدد مثبت قدر مطلق بزرگتری نسبت به عدد منفی دارد. تمام جفت‌های صحیح را که حاصلشان -32 است فهرست کنید.
-1+32=31 -2+16=14 -4+8=4
مجموع هر زوج را محاسبه کنید.
a=-4 b=8
جواب زوجی است که مجموع آن 4 است.
\left(x^{2}-4x\right)+\left(8x-32\right)
x^{2}+4x-32 را به‌عنوان \left(x^{2}-4x\right)+\left(8x-32\right) بازنویسی کنید.
x\left(x-4\right)+8\left(x-4\right)
در گروه اول از x و در گروه دوم از 8 فاکتور بگیرید.
\left(x-4\right)\left(x+8\right)
با استفاده از خاصیت توزیع‌پذیری، از جمله مشترک x-4 فاکتور بگیرید.
x=4 x=-8
برای پیدا کردن جواب‌های معادله، x-4=0 و x+8=0 را حل کنید.
x^{2}+4x=32
همه معادله‌های به صورت ax^{2}+bx+c=0 را می‌توان با استفاده از فرمول درجه دوم حل کرد: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. فرمول درجه دوم دو راه‌حل ارائه می‌کند، یکی زمانی که ± یک به‌علاوه و دیگری زمامی که یک تفریق است.
x^{2}+4x-32=32-32
32 را از هر دو طرف معادله تفریق کنید.
x^{2}+4x-32=0
تفریق 32 از خودش برابر با 0 می‌شود.
x=\frac{-4±\sqrt{4^{2}-4\left(-32\right)}}{2}
این معادله به صورت استاندارد است: ax^{2}+bx+c=0. 1 را با a، 4 را با b و -32 را با c در فرمول درجه دوم، \frac{-b±\sqrt{b^{2}-4ac}}{2a} جایگزین کنید.
x=\frac{-4±\sqrt{16-4\left(-32\right)}}{2}
4 را مجذور کنید.
x=\frac{-4±\sqrt{16+128}}{2}
-4 بار -32.
x=\frac{-4±\sqrt{144}}{2}
16 را به 128 اضافه کنید.
x=\frac{-4±12}{2}
ریشه دوم 144 را به دست آورید.
x=\frac{8}{2}
اکنون معادله x=\frac{-4±12}{2} را وقتی که ± مثبت است حل کنید. -4 را به 12 اضافه کنید.
x=4
8 را بر 2 تقسیم کنید.
x=-\frac{16}{2}
اکنون معادله x=\frac{-4±12}{2} وقتی که ± منفی است حل کنید. 12 را از -4 تفریق کنید.
x=-8
-16 را بر 2 تقسیم کنید.
x=4 x=-8
این معادله اکنون حل شده است.
x^{2}+4x=32
معادلات درجه دوم مانند این مورد را می‌توان با تکمیل مربع حل کرد. به منظور تکمیل مربع، معادله باید ابتدا در قالب x^{2}+bx=c باشد.
x^{2}+4x+2^{2}=32+2^{2}
4، ضريب جمله x را بر 2 تقسیم کنید تا حاصل 2 شود. سپس مجذور 2 را به هر دو طرف معادله اضافه کنید. این مرحله، طرف چپ معادله را به یک مربع کامل تبدیل می‌کند.
x^{2}+4x+4=32+4
2 را مجذور کنید.
x^{2}+4x+4=36
32 را به 4 اضافه کنید.
\left(x+2\right)^{2}=36
عامل x^{2}+4x+4. در مجموع، هرگاه x^{2}+bx+c یک مربع کامل باشد می‌تواند همیشه به عنوان \left(x+\frac{b}{2}\right)^{2} فاکتورگیری شود.
\sqrt{\left(x+2\right)^{2}}=\sqrt{36}
ریشه دوم هر دو طرف معادله را به دست آورید.
x+2=6 x+2=-6
ساده کنید.
x=4 x=-8
2 را از هر دو طرف معادله تفریق کنید.