پرش به محتوای اصلی
عامل
Tick mark Image
ارزیابی
Tick mark Image
گراف

مشکلات مشابه از جستجوی وب

اشتراک گذاشتن

a+b=3 ab=1\left(-28\right)=-28
با گروه‌بندی عبارت، از آن فاکتور بگیرید. ابتدا، عبارت باید به‌صورت x^{2}+ax+bx-28 بازنویسی شود. برای یافتن a و b، دستگاهی را که باید حل شود تشکیل دهید.
-1,28 -2,14 -4,7
از آنجا که ab منفی است، a و b علامت مخالف هم دارند. از آنجا که a+b مثبت است، عدد مثبت قدر مطلق بزرگتری نسبت به عدد منفی دارد. تمام جفت‌های صحیح را که حاصلشان -28 است فهرست کنید.
-1+28=27 -2+14=12 -4+7=3
مجموع هر زوج را محاسبه کنید.
a=-4 b=7
جواب زوجی است که مجموع آن 3 است.
\left(x^{2}-4x\right)+\left(7x-28\right)
x^{2}+3x-28 را به‌عنوان \left(x^{2}-4x\right)+\left(7x-28\right) بازنویسی کنید.
x\left(x-4\right)+7\left(x-4\right)
در گروه اول از x و در گروه دوم از 7 فاکتور بگیرید.
\left(x-4\right)\left(x+7\right)
با استفاده از خاصیت توزیع‌پذیری، از جمله مشترک x-4 فاکتور بگیرید.
x^{2}+3x-28=0
چند جمله‌ای درجه دوم را می‌توان با استفاده از تبدیل ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) فاکتور گرفت، به طوری که x_{1} و x_{2} راه حل معادله درجه دوم ax^{2}+bx+c=0 است.
x=\frac{-3±\sqrt{3^{2}-4\left(-28\right)}}{2}
همه معادله‌های به صورت ax^{2}+bx+c=0 را می‌توان با استفاده از فرمول درجه دوم حل کرد: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. فرمول درجه دوم دو راه‌حل ارائه می‌کند، یکی زمانی که ± یک به‌علاوه و دیگری زمامی که یک تفریق است.
x=\frac{-3±\sqrt{9-4\left(-28\right)}}{2}
3 را مجذور کنید.
x=\frac{-3±\sqrt{9+112}}{2}
-4 بار -28.
x=\frac{-3±\sqrt{121}}{2}
9 را به 112 اضافه کنید.
x=\frac{-3±11}{2}
ریشه دوم 121 را به دست آورید.
x=\frac{8}{2}
اکنون معادله x=\frac{-3±11}{2} را وقتی که ± مثبت است حل کنید. -3 را به 11 اضافه کنید.
x=4
8 را بر 2 تقسیم کنید.
x=-\frac{14}{2}
اکنون معادله x=\frac{-3±11}{2} وقتی که ± منفی است حل کنید. 11 را از -3 تفریق کنید.
x=-7
-14 را بر 2 تقسیم کنید.
x^{2}+3x-28=\left(x-4\right)\left(x-\left(-7\right)\right)
عبارت اصلی را با استفاده از ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) فاکتور بگیرید. 4 را برای x_{1} و -7 را برای x_{2} جایگزین کنید.
x^{2}+3x-28=\left(x-4\right)\left(x+7\right)
همه عبارت‌های فرم p-\left(-q\right) را به p+q ساده کنید.