مشتق گرفتن w.r.t. x
-\frac{3}{4x^{\frac{7}{4}}}
ارزیابی
\frac{1}{x^{\frac{3}{4}}}
گراف
اشتراک گذاشتن
رونوشتشده در تخته یادداشت
x^{-\frac{1}{4}}\frac{\mathrm{d}}{\mathrm{d}x}(x^{-\frac{1}{2}})+x^{-\frac{1}{2}}\frac{\mathrm{d}}{\mathrm{d}x}(x^{-\frac{1}{4}})
برای توابع مشتقپذیر، مشتق حاصلضرب دو تابع یک برابر تابع مشتق دوم به علاوه دو برابر تابع مشتق اولی است.
x^{-\frac{1}{4}}\left(-\frac{1}{2}\right)x^{-\frac{1}{2}-1}+x^{-\frac{1}{2}}\left(-\frac{1}{4}\right)x^{-\frac{1}{4}-1}
مشتق یک چند جملهای، مجموع مشتقهای عبارتهای آن است. مشتق یک عبارت ثابت 0 است. مشتق ax^{n} برابر است با nax^{n-1}.
x^{-\frac{1}{4}}\left(-\frac{1}{2}\right)x^{-\frac{3}{2}}+x^{-\frac{1}{2}}\left(-\frac{1}{4}\right)x^{-\frac{5}{4}}
ساده کنید.
-\frac{1}{2}x^{-\frac{1}{4}-\frac{3}{2}}-\frac{1}{4}x^{-\frac{1}{2}-\frac{5}{4}}
برای ضرب توانهای دارای پایه مشابه، توانهای آنها را اضافه کنید.
-\frac{1}{2}x^{-\frac{7}{4}}-\frac{1}{4}x^{-\frac{7}{4}}
ساده کنید.
نمونه
معادله درجه دوم
{ x } ^ { 2 } - 4 x - 5 = 0
مثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادله خطی
y = 3x + 4
حساب
699 * 533
ماتریس
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادله همزمان
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
تمایز
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ادغام
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
محدودیت
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}