برای x حل کنید
x=-\frac{1}{2}=-0.5
گراف
اشتراک گذاشتن
رونوشتشده در تخته یادداشت
\sqrt{3}x+2\sqrt{3}=\frac{x+5}{\sqrt{3}}
12=2^{2}\times 3 را فاکتور بگیرید. حاصلضرب جذر \sqrt{2^{2}\times 3} را بهصورت حاصلضرب ریشههای دوم \sqrt{2^{2}}\sqrt{3} بازنویسی کنید. ریشه دوم 2^{2} را به دست آورید.
\sqrt{3}x+2\sqrt{3}=\frac{\left(x+5\right)\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
مخرج \frac{x+5}{\sqrt{3}} را با ضرب صورت و مخرج به \sqrt{3} گویا کنید.
\sqrt{3}x+2\sqrt{3}=\frac{\left(x+5\right)\sqrt{3}}{3}
مجذور \sqrt{3} عبارت است از 3.
\sqrt{3}x+2\sqrt{3}=\frac{x\sqrt{3}+5\sqrt{3}}{3}
از اموال توزیعی برای ضرب x+5 در \sqrt{3} استفاده کنید.
\sqrt{3}x+2\sqrt{3}-\frac{x\sqrt{3}+5\sqrt{3}}{3}=0
\frac{x\sqrt{3}+5\sqrt{3}}{3} را از هر دو طرف تفریق کنید.
\sqrt{3}x-\frac{x\sqrt{3}+5\sqrt{3}}{3}=-2\sqrt{3}
2\sqrt{3} را از هر دو طرف تفریق کنید. هر چیزی که از صفر کم میشود، منفی خودش میشود.
3\sqrt{3}x-\left(x\sqrt{3}+5\sqrt{3}\right)=-6\sqrt{3}
هر دو طرف معادله را در 3 ضرب کنید.
3\sqrt{3}x-x\sqrt{3}-5\sqrt{3}=-6\sqrt{3}
برای پیدا کردن متضاد x\sqrt{3}+5\sqrt{3}، متضاد هر اصطلاح پیدا شود.
2\sqrt{3}x-5\sqrt{3}=-6\sqrt{3}
3\sqrt{3}x و -x\sqrt{3} را برای به دست آوردن 2\sqrt{3}x ترکیب کنید.
2\sqrt{3}x=-6\sqrt{3}+5\sqrt{3}
5\sqrt{3} را به هر دو طرف اضافه کنید.
2\sqrt{3}x=-\sqrt{3}
-6\sqrt{3} و 5\sqrt{3} را برای به دست آوردن -\sqrt{3} ترکیب کنید.
\frac{2\sqrt{3}x}{2\sqrt{3}}=-\frac{\sqrt{3}}{2\sqrt{3}}
هر دو طرف بر 2\sqrt{3} تقسیم شوند.
x=-\frac{\sqrt{3}}{2\sqrt{3}}
تقسیم بر 2\sqrt{3}، ضرب در 2\sqrt{3} را لغو میکند.
x=-\frac{1}{2}
-\sqrt{3} را بر 2\sqrt{3} تقسیم کنید.
نمونه
معادله درجه دوم
{ x } ^ { 2 } - 4 x - 5 = 0
مثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادله خطی
y = 3x + 4
حساب
699 * 533
ماتریس
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادله همزمان
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
تمایز
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ادغام
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
محدودیت
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}