پرش به محتوای اصلی
ارزیابی
Tick mark Image
عامل
Tick mark Image

اشتراک گذاشتن

\left(\frac{1}{3}\right)^{8}+8\times \frac{2}{3}\times \left(\frac{1}{3}\right)^{7}+\frac{8!}{6!\times 2!}\times \left(\frac{2}{3}\right)^{2}\times \left(\frac{1}{3}\right)^{6}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
4! و 4! را برای دستیابی به \left(4!\right)^{2} ضرب کنید.
\frac{1}{6561}+8\times \frac{2}{3}\times \left(\frac{1}{3}\right)^{7}+\frac{8!}{6!\times 2!}\times \left(\frac{2}{3}\right)^{2}\times \left(\frac{1}{3}\right)^{6}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
\frac{1}{3} را به توان 8 محاسبه کنید و \frac{1}{6561} را به دست آورید.
\frac{1}{6561}+\frac{8\times 2}{3}\times \left(\frac{1}{3}\right)^{7}+\frac{8!}{6!\times 2!}\times \left(\frac{2}{3}\right)^{2}\times \left(\frac{1}{3}\right)^{6}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
8\times \frac{2}{3} را به عنوان یک کسر تکی نشان دهید.
\frac{1}{6561}+\frac{16}{3}\times \left(\frac{1}{3}\right)^{7}+\frac{8!}{6!\times 2!}\times \left(\frac{2}{3}\right)^{2}\times \left(\frac{1}{3}\right)^{6}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
8 و 2 را برای دستیابی به 16 ضرب کنید.
\frac{1}{6561}+\frac{16}{3}\times \frac{1}{2187}+\frac{8!}{6!\times 2!}\times \left(\frac{2}{3}\right)^{2}\times \left(\frac{1}{3}\right)^{6}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
\frac{1}{3} را به توان 7 محاسبه کنید و \frac{1}{2187} را به دست آورید.
\frac{1}{6561}+\frac{16\times 1}{3\times 2187}+\frac{8!}{6!\times 2!}\times \left(\frac{2}{3}\right)^{2}\times \left(\frac{1}{3}\right)^{6}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
با ضرب صورت کسر در صورت کسر و مخرج کسر در مخرج کسر، \frac{16}{3} را در \frac{1}{2187} ضرب کنید.
\frac{1}{6561}+\frac{16}{6561}+\frac{8!}{6!\times 2!}\times \left(\frac{2}{3}\right)^{2}\times \left(\frac{1}{3}\right)^{6}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
ضرب را در کسر \frac{16\times 1}{3\times 2187} انجام دهید.
\frac{1+16}{6561}+\frac{8!}{6!\times 2!}\times \left(\frac{2}{3}\right)^{2}\times \left(\frac{1}{3}\right)^{6}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
از آنجا که \frac{1}{6561} و \frac{16}{6561} دارای مخرج مشترک هستند، با افزودن صورت کسرها آنها را جمع کنید.
\frac{17}{6561}+\frac{8!}{6!\times 2!}\times \left(\frac{2}{3}\right)^{2}\times \left(\frac{1}{3}\right)^{6}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
1 و 16 را برای دریافت 17 اضافه کنید.
\frac{17}{6561}+\frac{40320}{6!\times 2!}\times \left(\frac{2}{3}\right)^{2}\times \left(\frac{1}{3}\right)^{6}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
فاکتوریل 8 عبارت است از 40320.
\frac{17}{6561}+\frac{40320}{720\times 2!}\times \left(\frac{2}{3}\right)^{2}\times \left(\frac{1}{3}\right)^{6}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
فاکتوریل 6 عبارت است از 720.
\frac{17}{6561}+\frac{40320}{720\times 2}\times \left(\frac{2}{3}\right)^{2}\times \left(\frac{1}{3}\right)^{6}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
فاکتوریل 2 عبارت است از 2.
\frac{17}{6561}+\frac{40320}{1440}\times \left(\frac{2}{3}\right)^{2}\times \left(\frac{1}{3}\right)^{6}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
720 و 2 را برای دستیابی به 1440 ضرب کنید.
\frac{17}{6561}+28\times \left(\frac{2}{3}\right)^{2}\times \left(\frac{1}{3}\right)^{6}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
40320 را بر 1440 برای به دست آوردن 28 تقسیم کنید.
\frac{17}{6561}+28\times \frac{4}{9}\times \left(\frac{1}{3}\right)^{6}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
\frac{2}{3} را به توان 2 محاسبه کنید و \frac{4}{9} را به دست آورید.
\frac{17}{6561}+\frac{28\times 4}{9}\times \left(\frac{1}{3}\right)^{6}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
28\times \frac{4}{9} را به عنوان یک کسر تکی نشان دهید.
\frac{17}{6561}+\frac{112}{9}\times \left(\frac{1}{3}\right)^{6}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
28 و 4 را برای دستیابی به 112 ضرب کنید.
\frac{17}{6561}+\frac{112}{9}\times \frac{1}{729}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
\frac{1}{3} را به توان 6 محاسبه کنید و \frac{1}{729} را به دست آورید.
\frac{17}{6561}+\frac{112\times 1}{9\times 729}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
با ضرب صورت کسر در صورت کسر و مخرج کسر در مخرج کسر، \frac{112}{9} را در \frac{1}{729} ضرب کنید.
\frac{17}{6561}+\frac{112}{6561}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
ضرب را در کسر \frac{112\times 1}{9\times 729} انجام دهید.
\frac{17+112}{6561}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
از آنجا که \frac{17}{6561} و \frac{112}{6561} دارای مخرج مشترک هستند، با افزودن صورت کسرها آنها را جمع کنید.
\frac{129}{6561}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
17 و 112 را برای دریافت 129 اضافه کنید.
\frac{43}{2187}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
کسر \frac{129}{6561} را با ریشه گرفتن و ساده کردن 3، به کمترین عبارت‌ها کاهش دهید.
\frac{43}{2187}+\frac{40320}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
فاکتوریل 8 عبارت است از 40320.
\frac{43}{2187}+\frac{40320}{120\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
فاکتوریل 5 عبارت است از 120.
\frac{43}{2187}+\frac{40320}{120\times 6}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
فاکتوریل 3 عبارت است از 6.
\frac{43}{2187}+\frac{40320}{720}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
120 و 6 را برای دستیابی به 720 ضرب کنید.
\frac{43}{2187}+56\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
40320 را بر 720 برای به دست آوردن 56 تقسیم کنید.
\frac{43}{2187}+56\times \frac{8}{27}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
\frac{2}{3} را به توان 3 محاسبه کنید و \frac{8}{27} را به دست آورید.
\frac{43}{2187}+\frac{56\times 8}{27}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
56\times \frac{8}{27} را به عنوان یک کسر تکی نشان دهید.
\frac{43}{2187}+\frac{448}{27}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
56 و 8 را برای دستیابی به 448 ضرب کنید.
\frac{43}{2187}+\frac{448}{27}\times \frac{1}{243}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
\frac{1}{3} را به توان 5 محاسبه کنید و \frac{1}{243} را به دست آورید.
\frac{43}{2187}+\frac{448\times 1}{27\times 243}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
با ضرب صورت کسر در صورت کسر و مخرج کسر در مخرج کسر، \frac{448}{27} را در \frac{1}{243} ضرب کنید.
\frac{43}{2187}+\frac{448}{6561}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
ضرب را در کسر \frac{448\times 1}{27\times 243} انجام دهید.
\frac{129}{6561}+\frac{448}{6561}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
کوچک‌ترین مضرب مشترک 2187 و 6561 عبارت است از 6561. \frac{43}{2187} و \frac{448}{6561} را به کسرهایی مخرج 6561 تبدیل کنید.
\frac{129+448}{6561}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
از آنجا که \frac{129}{6561} و \frac{448}{6561} دارای مخرج مشترک هستند، با افزودن صورت کسرها آنها را جمع کنید.
\frac{577}{6561}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
129 و 448 را برای دریافت 577 اضافه کنید.
\frac{577}{6561}+\frac{40320}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
فاکتوریل 8 عبارت است از 40320.
\frac{577}{6561}+\frac{40320}{24^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
فاکتوریل 4 عبارت است از 24.
\frac{577}{6561}+\frac{40320}{576}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
24 را به توان 2 محاسبه کنید و 576 را به دست آورید.
\frac{577}{6561}+70\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
40320 را بر 576 برای به دست آوردن 70 تقسیم کنید.
\frac{577}{6561}+70\times \frac{16}{81}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
\frac{2}{3} را به توان 4 محاسبه کنید و \frac{16}{81} را به دست آورید.
\frac{577}{6561}+\frac{70\times 16}{81}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
70\times \frac{16}{81} را به عنوان یک کسر تکی نشان دهید.
\frac{577}{6561}+\frac{1120}{81}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
70 و 16 را برای دستیابی به 1120 ضرب کنید.
\frac{577}{6561}+\frac{1120}{81}\times \frac{1}{81}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
\frac{1}{3} را به توان 4 محاسبه کنید و \frac{1}{81} را به دست آورید.
\frac{577}{6561}+\frac{1120\times 1}{81\times 81}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
با ضرب صورت کسر در صورت کسر و مخرج کسر در مخرج کسر، \frac{1120}{81} را در \frac{1}{81} ضرب کنید.
\frac{577}{6561}+\frac{1120}{6561}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
ضرب را در کسر \frac{1120\times 1}{81\times 81} انجام دهید.
\frac{577+1120}{6561}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
از آنجا که \frac{577}{6561} و \frac{1120}{6561} دارای مخرج مشترک هستند، با افزودن صورت کسرها آنها را جمع کنید.
\frac{1697}{6561}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
577 و 1120 را برای دریافت 1697 اضافه کنید.
\frac{1697}{6561}+\frac{40320}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
فاکتوریل 8 عبارت است از 40320.
\frac{1697}{6561}+\frac{40320}{6\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
فاکتوریل 3 عبارت است از 6.
\frac{1697}{6561}+\frac{40320}{6\times 120}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
فاکتوریل 5 عبارت است از 120.
\frac{1697}{6561}+\frac{40320}{720}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
6 و 120 را برای دستیابی به 720 ضرب کنید.
\frac{1697}{6561}+56\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
40320 را بر 720 برای به دست آوردن 56 تقسیم کنید.
\frac{1697}{6561}+56\times \frac{32}{243}\times \left(\frac{1}{3}\right)^{3}
\frac{2}{3} را به توان 5 محاسبه کنید و \frac{32}{243} را به دست آورید.
\frac{1697}{6561}+\frac{56\times 32}{243}\times \left(\frac{1}{3}\right)^{3}
56\times \frac{32}{243} را به عنوان یک کسر تکی نشان دهید.
\frac{1697}{6561}+\frac{1792}{243}\times \left(\frac{1}{3}\right)^{3}
56 و 32 را برای دستیابی به 1792 ضرب کنید.
\frac{1697}{6561}+\frac{1792}{243}\times \frac{1}{27}
\frac{1}{3} را به توان 3 محاسبه کنید و \frac{1}{27} را به دست آورید.
\frac{1697}{6561}+\frac{1792\times 1}{243\times 27}
با ضرب صورت کسر در صورت کسر و مخرج کسر در مخرج کسر، \frac{1792}{243} را در \frac{1}{27} ضرب کنید.
\frac{1697}{6561}+\frac{1792}{6561}
ضرب را در کسر \frac{1792\times 1}{243\times 27} انجام دهید.
\frac{1697+1792}{6561}
از آنجا که \frac{1697}{6561} و \frac{1792}{6561} دارای مخرج مشترک هستند، با افزودن صورت کسرها آنها را جمع کنید.
\frac{3489}{6561}
1697 و 1792 را برای دریافت 3489 اضافه کنید.
\frac{1163}{2187}
کسر \frac{3489}{6561} را با ریشه گرفتن و ساده کردن 3، به کمترین عبارت‌ها کاهش دهید.