برای x،y حل کنید
x=-48
y=87
گراف
اشتراک گذاشتن
رونوشتشده در تخته یادداشت
x+y=39,x+2y=126
برای حل یک سری معادله با استفاده از جایگزینی، ابتدا یکی از معادلهها را برای یکی از متغیرها حل کنید. سپس نتیجه را برای آن متغیر در معادله دیگر جایگزین کنید.
x+y=39
یکی از معادلات را انتخاب کنید و با تنها نگه داشتن x در سمت چپ علامت مساوی و حل معادله، x را به دست آورید.
x=-y+39
y را از هر دو طرف معادله تفریق کنید.
-y+39+2y=126
-y+39 را با x در معادله جایگزین کنید، x+2y=126.
y+39=126
-y را به 2y اضافه کنید.
y=87
39 را از هر دو طرف معادله تفریق کنید.
x=-87+39
87 را با y در x=-y+39 جایگزین کنید. از آنجایی که معادله حاصل شامل تنها یک متغیر است، میتوانید به طور مستقیم برای x حل کنید.
x=-48
39 را به -87 اضافه کنید.
x=-48,y=87
سیستم در حال حاضر حل شده است.
x+y=39,x+2y=126
معادلات را در قالب استاندارد قرار داده و سپس از ماتریسها برای حل سیستم معادلات استفاده کنید.
\left(\begin{matrix}1&1\\1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}39\\126\end{matrix}\right)
معادلهها را به شکل ماتریس بنویسید.
inverse(\left(\begin{matrix}1&1\\1&2\end{matrix}\right))\left(\begin{matrix}1&1\\1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&2\end{matrix}\right))\left(\begin{matrix}39\\126\end{matrix}\right)
معادله را از سمت چپ در ماتریس وارون \left(\begin{matrix}1&1\\1&2\end{matrix}\right) ضرب کنید.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&2\end{matrix}\right))\left(\begin{matrix}39\\126\end{matrix}\right)
حاصل ماتریس و وارون آن ماتریس همانی است.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&2\end{matrix}\right))\left(\begin{matrix}39\\126\end{matrix}\right)
ماتریسهای سمت چپ علامت مساوی را ضرب کنید.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-1}&-\frac{1}{2-1}\\-\frac{1}{2-1}&\frac{1}{2-1}\end{matrix}\right)\left(\begin{matrix}39\\126\end{matrix}\right)
برای ماتریس 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)، ماتریس معکوس \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) است، بنابراین معادله ماتریس میتواند بهصورت مسئله ضرب ماتریس بازنویسی شود.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2&-1\\-1&1\end{matrix}\right)\left(\begin{matrix}39\\126\end{matrix}\right)
محاسبات را انجام دهید.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\times 39-126\\-39+126\end{matrix}\right)
ماتریسها را ضرب کنید.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-48\\87\end{matrix}\right)
محاسبات را انجام دهید.
x=-48,y=87
عناصر ماتریس x و y را استخراج کنید.
x+y=39,x+2y=126
برای حل با استفاده از حذف، ضرایب یکی از متغیرها باید در هر دو معادله مشابه باشد، بنابراین متغیر در زمانی که یک معادله از معادله دیگر تفریق میشود، برابر خواهد شد.
x-x+y-2y=39-126
x+2y=126 را از x+y=39 با کم کردن جملههای دارای متغیر مساوی در هر طرف علامت مساوی تفریق کنید.
y-2y=39-126
x را به -x اضافه کنید. عبارتهای x و -x با هم ساده میشوند و معادله تنها با یک متغیر باقی میماند که میتوان آن را حل کرد.
-y=39-126
y را به -2y اضافه کنید.
-y=-87
39 را به -126 اضافه کنید.
y=87
هر دو طرف بر -1 تقسیم شوند.
x+2\times 87=126
87 را با y در x+2y=126 جایگزین کنید. از آنجایی که معادله حاصل شامل تنها یک متغیر است، میتوانید به طور مستقیم برای x حل کنید.
x+174=126
2 بار 87.
x=-48
174 را از هر دو طرف معادله تفریق کنید.
x=-48,y=87
سیستم در حال حاضر حل شده است.
نمونه
معادله درجه دوم
{ x } ^ { 2 } - 4 x - 5 = 0
مثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادله خطی
y = 3x + 4
حساب
699 * 533
ماتریس
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادله همزمان
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
تمایز
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ادغام
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
محدودیت
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}