برای x،y حل کنید
x=400
y=20
گراف
اشتراک گذاشتن
رونوشتشده در تخته یادداشت
x+20y=800
اولین معادله را در نظر بگیرید. طرفین معادله را جابجا کنید تا همه جملات متغیر در سمت چپ قرار گیرند.
x+15y=700
دومین معادله را در نظر بگیرید. طرفین معادله را جابجا کنید تا همه جملات متغیر در سمت چپ قرار گیرند.
x+20y=800,x+15y=700
برای حل یک سری معادله با استفاده از جایگزینی، ابتدا یکی از معادلهها را برای یکی از متغیرها حل کنید. سپس نتیجه را برای آن متغیر در معادله دیگر جایگزین کنید.
x+20y=800
یکی از معادلات را انتخاب کنید و با تنها نگه داشتن x در سمت چپ علامت مساوی و حل معادله، x را به دست آورید.
x=-20y+800
20y را از هر دو طرف معادله تفریق کنید.
-20y+800+15y=700
-20y+800 را با x در معادله جایگزین کنید، x+15y=700.
-5y+800=700
-20y را به 15y اضافه کنید.
-5y=-100
800 را از هر دو طرف معادله تفریق کنید.
y=20
هر دو طرف بر -5 تقسیم شوند.
x=-20\times 20+800
20 را با y در x=-20y+800 جایگزین کنید. از آنجایی که معادله حاصل شامل تنها یک متغیر است، میتوانید به طور مستقیم برای x حل کنید.
x=-400+800
-20 بار 20.
x=400
800 را به -400 اضافه کنید.
x=400,y=20
سیستم در حال حاضر حل شده است.
x+20y=800
اولین معادله را در نظر بگیرید. طرفین معادله را جابجا کنید تا همه جملات متغیر در سمت چپ قرار گیرند.
x+15y=700
دومین معادله را در نظر بگیرید. طرفین معادله را جابجا کنید تا همه جملات متغیر در سمت چپ قرار گیرند.
x+20y=800,x+15y=700
معادلات را در قالب استاندارد قرار داده و سپس از ماتریسها برای حل سیستم معادلات استفاده کنید.
\left(\begin{matrix}1&20\\1&15\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}800\\700\end{matrix}\right)
معادلهها را به شکل ماتریس بنویسید.
inverse(\left(\begin{matrix}1&20\\1&15\end{matrix}\right))\left(\begin{matrix}1&20\\1&15\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&20\\1&15\end{matrix}\right))\left(\begin{matrix}800\\700\end{matrix}\right)
معادله را از سمت چپ در ماتریس وارون \left(\begin{matrix}1&20\\1&15\end{matrix}\right) ضرب کنید.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&20\\1&15\end{matrix}\right))\left(\begin{matrix}800\\700\end{matrix}\right)
حاصل ماتریس و وارون آن ماتریس همانی است.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&20\\1&15\end{matrix}\right))\left(\begin{matrix}800\\700\end{matrix}\right)
ماتریسهای سمت چپ علامت مساوی را ضرب کنید.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{15}{15-20}&-\frac{20}{15-20}\\-\frac{1}{15-20}&\frac{1}{15-20}\end{matrix}\right)\left(\begin{matrix}800\\700\end{matrix}\right)
برای ماتریس 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)، ماتریس معکوس \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) است، بنابراین معادله ماتریس میتواند بهصورت مسئله ضرب ماتریس بازنویسی شود.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3&4\\\frac{1}{5}&-\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}800\\700\end{matrix}\right)
محاسبات را انجام دهید.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\times 800+4\times 700\\\frac{1}{5}\times 800-\frac{1}{5}\times 700\end{matrix}\right)
ماتریسها را ضرب کنید.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}400\\20\end{matrix}\right)
محاسبات را انجام دهید.
x=400,y=20
عناصر ماتریس x و y را استخراج کنید.
x+20y=800
اولین معادله را در نظر بگیرید. طرفین معادله را جابجا کنید تا همه جملات متغیر در سمت چپ قرار گیرند.
x+15y=700
دومین معادله را در نظر بگیرید. طرفین معادله را جابجا کنید تا همه جملات متغیر در سمت چپ قرار گیرند.
x+20y=800,x+15y=700
برای حل با استفاده از حذف، ضرایب یکی از متغیرها باید در هر دو معادله مشابه باشد، بنابراین متغیر در زمانی که یک معادله از معادله دیگر تفریق میشود، برابر خواهد شد.
x-x+20y-15y=800-700
x+15y=700 را از x+20y=800 با کم کردن جملههای دارای متغیر مساوی در هر طرف علامت مساوی تفریق کنید.
20y-15y=800-700
x را به -x اضافه کنید. عبارتهای x و -x با هم ساده میشوند و معادله تنها با یک متغیر باقی میماند که میتوان آن را حل کرد.
5y=800-700
20y را به -15y اضافه کنید.
5y=100
800 را به -700 اضافه کنید.
y=20
هر دو طرف بر 5 تقسیم شوند.
x+15\times 20=700
20 را با y در x+15y=700 جایگزین کنید. از آنجایی که معادله حاصل شامل تنها یک متغیر است، میتوانید به طور مستقیم برای x حل کنید.
x+300=700
15 بار 20.
x=400
300 را از هر دو طرف معادله تفریق کنید.
x=400,y=20
سیستم در حال حاضر حل شده است.
نمونه
معادله درجه دوم
{ x } ^ { 2 } - 4 x - 5 = 0
مثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادله خطی
y = 3x + 4
حساب
699 * 533
ماتریس
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادله همزمان
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
تمایز
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ادغام
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
محدودیت
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}