برای x،y حل کنید
x=11
y=55
گراف
اشتراک گذاشتن
رونوشتشده در تخته یادداشت
y-5x=0
دومین معادله را در نظر بگیرید. 5x را از هر دو طرف تفریق کنید.
3x+4y=253,-5x+y=0
برای حل یک سری معادله با استفاده از جایگزینی، ابتدا یکی از معادلهها را برای یکی از متغیرها حل کنید. سپس نتیجه را برای آن متغیر در معادله دیگر جایگزین کنید.
3x+4y=253
یکی از معادلات را انتخاب کنید و با تنها نگه داشتن x در سمت چپ علامت مساوی و حل معادله، x را به دست آورید.
3x=-4y+253
4y را از هر دو طرف معادله تفریق کنید.
x=\frac{1}{3}\left(-4y+253\right)
هر دو طرف بر 3 تقسیم شوند.
x=-\frac{4}{3}y+\frac{253}{3}
\frac{1}{3} بار -4y+253.
-5\left(-\frac{4}{3}y+\frac{253}{3}\right)+y=0
\frac{-4y+253}{3} را با x در معادله جایگزین کنید، -5x+y=0.
\frac{20}{3}y-\frac{1265}{3}+y=0
-5 بار \frac{-4y+253}{3}.
\frac{23}{3}y-\frac{1265}{3}=0
\frac{20y}{3} را به y اضافه کنید.
\frac{23}{3}y=\frac{1265}{3}
\frac{1265}{3} را به هر دو طرف معامله اضافه کنید.
y=55
هر دو طرف معادله را بر \frac{23}{3} تقسیم کنید که مشابه ضرب هر دو طرف در اعداد متقابل کسر است.
x=-\frac{4}{3}\times 55+\frac{253}{3}
55 را با y در x=-\frac{4}{3}y+\frac{253}{3} جایگزین کنید. از آنجایی که معادله حاصل شامل تنها یک متغیر است، میتوانید به طور مستقیم برای x حل کنید.
x=\frac{-220+253}{3}
-\frac{4}{3} بار 55.
x=11
با یافتن یک مخرج مشترک و اضافه کردن صورت کسرها، \frac{253}{3} را به -\frac{220}{3} اضافه کنید. سپس در صورت امکان، کسر را به کمترین حالت ممکن ساده کنید.
x=11,y=55
سیستم در حال حاضر حل شده است.
y-5x=0
دومین معادله را در نظر بگیرید. 5x را از هر دو طرف تفریق کنید.
3x+4y=253,-5x+y=0
معادلات را در قالب استاندارد قرار داده و سپس از ماتریسها برای حل سیستم معادلات استفاده کنید.
\left(\begin{matrix}3&4\\-5&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}253\\0\end{matrix}\right)
معادلهها را به شکل ماتریس بنویسید.
inverse(\left(\begin{matrix}3&4\\-5&1\end{matrix}\right))\left(\begin{matrix}3&4\\-5&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\-5&1\end{matrix}\right))\left(\begin{matrix}253\\0\end{matrix}\right)
معادله را از سمت چپ در ماتریس وارون \left(\begin{matrix}3&4\\-5&1\end{matrix}\right) ضرب کنید.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\-5&1\end{matrix}\right))\left(\begin{matrix}253\\0\end{matrix}\right)
حاصل ماتریس و وارون آن ماتریس همانی است.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\-5&1\end{matrix}\right))\left(\begin{matrix}253\\0\end{matrix}\right)
ماتریسهای سمت چپ علامت مساوی را ضرب کنید.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-4\left(-5\right)}&-\frac{4}{3-4\left(-5\right)}\\-\frac{-5}{3-4\left(-5\right)}&\frac{3}{3-4\left(-5\right)}\end{matrix}\right)\left(\begin{matrix}253\\0\end{matrix}\right)
برای ماتریس 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)، ماتریس معکوس \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) است، بنابراین معادله ماتریس میتواند بهصورت مسئله ضرب ماتریس بازنویسی شود.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{23}&-\frac{4}{23}\\\frac{5}{23}&\frac{3}{23}\end{matrix}\right)\left(\begin{matrix}253\\0\end{matrix}\right)
محاسبات را انجام دهید.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{23}\times 253\\\frac{5}{23}\times 253\end{matrix}\right)
ماتریسها را ضرب کنید.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}11\\55\end{matrix}\right)
محاسبات را انجام دهید.
x=11,y=55
عناصر ماتریس x و y را استخراج کنید.
y-5x=0
دومین معادله را در نظر بگیرید. 5x را از هر دو طرف تفریق کنید.
3x+4y=253,-5x+y=0
برای حل با استفاده از حذف، ضرایب یکی از متغیرها باید در هر دو معادله مشابه باشد، بنابراین متغیر در زمانی که یک معادله از معادله دیگر تفریق میشود، برابر خواهد شد.
-5\times 3x-5\times 4y=-5\times 253,3\left(-5\right)x+3y=0
برای مساوی کردن 3x و -5x، همه عبارتهای موجود در هر طرف معادله اول را در -5 و همه عبارتهای موجود در هر طرف معادله دوم را در 3 ضرب کنید.
-15x-20y=-1265,-15x+3y=0
ساده کنید.
-15x+15x-20y-3y=-1265
-15x+3y=0 را از -15x-20y=-1265 با کم کردن جملههای دارای متغیر مساوی در هر طرف علامت مساوی تفریق کنید.
-20y-3y=-1265
-15x را به 15x اضافه کنید. عبارتهای -15x و 15x با هم ساده میشوند و معادله تنها با یک متغیر باقی میماند که میتوان آن را حل کرد.
-23y=-1265
-20y را به -3y اضافه کنید.
y=55
هر دو طرف بر -23 تقسیم شوند.
-5x+55=0
55 را با y در -5x+y=0 جایگزین کنید. از آنجایی که معادله حاصل شامل تنها یک متغیر است، میتوانید به طور مستقیم برای x حل کنید.
-5x=-55
55 را از هر دو طرف معادله تفریق کنید.
x=11
هر دو طرف بر -5 تقسیم شوند.
x=11,y=55
سیستم در حال حاضر حل شده است.
نمونه
معادله درجه دوم
{ x } ^ { 2 } - 4 x - 5 = 0
مثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادله خطی
y = 3x + 4
حساب
699 * 533
ماتریس
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادله همزمان
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
تمایز
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ادغام
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
محدودیت
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}