برای x،y حل کنید
x = \frac{350}{11} = 31\frac{9}{11} \approx 31.818181818
y = -\frac{80}{11} = -7\frac{3}{11} \approx -7.272727273
گراف
اشتراک گذاشتن
رونوشتشده در تخته یادداشت
2x-5y=100,4x+y=120
برای حل یک سری معادله با استفاده از جایگزینی، ابتدا یکی از معادلهها را برای یکی از متغیرها حل کنید. سپس نتیجه را برای آن متغیر در معادله دیگر جایگزین کنید.
2x-5y=100
یکی از معادلات را انتخاب کنید و با تنها نگه داشتن x در سمت چپ علامت مساوی و حل معادله، x را به دست آورید.
2x=5y+100
5y را به هر دو طرف معامله اضافه کنید.
x=\frac{1}{2}\left(5y+100\right)
هر دو طرف بر 2 تقسیم شوند.
x=\frac{5}{2}y+50
\frac{1}{2} بار 100+5y.
4\left(\frac{5}{2}y+50\right)+y=120
50+\frac{5y}{2} را با x در معادله جایگزین کنید، 4x+y=120.
10y+200+y=120
4 بار 50+\frac{5y}{2}.
11y+200=120
10y را به y اضافه کنید.
11y=-80
200 را از هر دو طرف معادله تفریق کنید.
y=-\frac{80}{11}
هر دو طرف بر 11 تقسیم شوند.
x=\frac{5}{2}\left(-\frac{80}{11}\right)+50
-\frac{80}{11} را با y در x=\frac{5}{2}y+50 جایگزین کنید. از آنجایی که معادله حاصل شامل تنها یک متغیر است، میتوانید به طور مستقیم برای x حل کنید.
x=-\frac{200}{11}+50
با ضرب صورت کسر در صورت کسر و مخرج کسر در مخرج کسر، \frac{5}{2} را در -\frac{80}{11} ضرب کنید. سپس در صورت امکان، کسر را به کمترین جمله ممکن ساده کنید.
x=\frac{350}{11}
50 را به -\frac{200}{11} اضافه کنید.
x=\frac{350}{11},y=-\frac{80}{11}
سیستم در حال حاضر حل شده است.
2x-5y=100,4x+y=120
معادلات را در قالب استاندارد قرار داده و سپس از ماتریسها برای حل سیستم معادلات استفاده کنید.
\left(\begin{matrix}2&-5\\4&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}100\\120\end{matrix}\right)
معادلهها را به شکل ماتریس بنویسید.
inverse(\left(\begin{matrix}2&-5\\4&1\end{matrix}\right))\left(\begin{matrix}2&-5\\4&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-5\\4&1\end{matrix}\right))\left(\begin{matrix}100\\120\end{matrix}\right)
معادله را از سمت چپ در ماتریس وارون \left(\begin{matrix}2&-5\\4&1\end{matrix}\right) ضرب کنید.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-5\\4&1\end{matrix}\right))\left(\begin{matrix}100\\120\end{matrix}\right)
حاصل ماتریس و وارون آن ماتریس همانی است.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-5\\4&1\end{matrix}\right))\left(\begin{matrix}100\\120\end{matrix}\right)
ماتریسهای سمت چپ علامت مساوی را ضرب کنید.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-\left(-5\times 4\right)}&-\frac{-5}{2-\left(-5\times 4\right)}\\-\frac{4}{2-\left(-5\times 4\right)}&\frac{2}{2-\left(-5\times 4\right)}\end{matrix}\right)\left(\begin{matrix}100\\120\end{matrix}\right)
برای ماتریس 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)، ماتریس معکوس \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) است، بنابراین معادله ماتریس میتواند بهصورت مسئله ضرب ماتریس بازنویسی شود.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{22}&\frac{5}{22}\\-\frac{2}{11}&\frac{1}{11}\end{matrix}\right)\left(\begin{matrix}100\\120\end{matrix}\right)
محاسبات را انجام دهید.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{22}\times 100+\frac{5}{22}\times 120\\-\frac{2}{11}\times 100+\frac{1}{11}\times 120\end{matrix}\right)
ماتریسها را ضرب کنید.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{350}{11}\\-\frac{80}{11}\end{matrix}\right)
محاسبات را انجام دهید.
x=\frac{350}{11},y=-\frac{80}{11}
عناصر ماتریس x و y را استخراج کنید.
2x-5y=100,4x+y=120
برای حل با استفاده از حذف، ضرایب یکی از متغیرها باید در هر دو معادله مشابه باشد، بنابراین متغیر در زمانی که یک معادله از معادله دیگر تفریق میشود، برابر خواهد شد.
4\times 2x+4\left(-5\right)y=4\times 100,2\times 4x+2y=2\times 120
برای مساوی کردن 2x و 4x، همه عبارتهای موجود در هر طرف معادله اول را در 4 و همه عبارتهای موجود در هر طرف معادله دوم را در 2 ضرب کنید.
8x-20y=400,8x+2y=240
ساده کنید.
8x-8x-20y-2y=400-240
8x+2y=240 را از 8x-20y=400 با کم کردن جملههای دارای متغیر مساوی در هر طرف علامت مساوی تفریق کنید.
-20y-2y=400-240
8x را به -8x اضافه کنید. عبارتهای 8x و -8x با هم ساده میشوند و معادله تنها با یک متغیر باقی میماند که میتوان آن را حل کرد.
-22y=400-240
-20y را به -2y اضافه کنید.
-22y=160
400 را به -240 اضافه کنید.
y=-\frac{80}{11}
هر دو طرف بر -22 تقسیم شوند.
4x-\frac{80}{11}=120
-\frac{80}{11} را با y در 4x+y=120 جایگزین کنید. از آنجایی که معادله حاصل شامل تنها یک متغیر است، میتوانید به طور مستقیم برای x حل کنید.
4x=\frac{1400}{11}
\frac{80}{11} را به هر دو طرف معامله اضافه کنید.
x=\frac{350}{11}
هر دو طرف بر 4 تقسیم شوند.
x=\frac{350}{11},y=-\frac{80}{11}
سیستم در حال حاضر حل شده است.
نمونه
معادله درجه دوم
{ x } ^ { 2 } - 4 x - 5 = 0
مثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادله خطی
y = 3x + 4
حساب
699 * 533
ماتریس
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادله همزمان
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
تمایز
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ادغام
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
محدودیت
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}