برای θ،a،b،c،d حل کنید (complex solution)
\theta =\pi n_{1}+\arctan(\frac{5}{2})
n_{1}\in \mathrm{Z}
a=\pi n_{1}+\arctan(\frac{5}{2})
n_{1}\in \mathrm{Z}
b\in \cup n_{1},\pi n_{1}+\arctan(\frac{5}{2})
n_{1}\in \mathrm{Z}
c\in \cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\pi n_{1}+\arctan(\frac{5}{2})
b=\pi n_{1}+\arctan(\frac{5}{2})
n_{1}\in \mathrm{Z}
d\in \cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\pi n_{1}+\arctan(\frac{5}{2})
c=\pi n_{1}+\arctan(\frac{5}{2})\text{ and }b=\pi n_{1}+\arctan(\frac{5}{2})
\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }b=\pi n_{1}+\arctan(\frac{5}{2})\right)
n_{1}\in \mathrm{Z}
برای θ،a،b،c،d حل کنید
\theta =2\pi n_{1}+\arcsin(\frac{5\sqrt{29}}{29})+\pi \text{, }n_{1}\in \mathrm{Z}\text{, }a=2\pi n_{1}+\arcsin(\frac{5\sqrt{29}}{29})+\pi \text{, }n_{1}\in \mathrm{Z}\text{, }b=2\pi n_{1}+\arcsin(\frac{5\sqrt{29}}{29})+\pi \text{, }n_{1}\in \mathrm{Z}\text{, }c=2\pi n_{1}+\arcsin(\frac{5\sqrt{29}}{29})+\pi \text{, }n_{1}\in \mathrm{Z}\text{, }d=2\pi n_{1}+\arcsin(\frac{5\sqrt{29}}{29})+\pi \text{, }n_{1}\in \mathrm{Z}
\theta =2\pi n_{2}+\arcsin(\frac{5\sqrt{29}}{29})\text{, }n_{2}\in \mathrm{Z}\text{, }a=2\pi n_{2}+\arcsin(\frac{5\sqrt{29}}{29})\text{, }n_{2}\in \mathrm{Z}\text{, }b=2\pi n_{2}+\arcsin(\frac{5\sqrt{29}}{29})\text{, }n_{2}\in \mathrm{Z}\text{, }c=2\pi n_{2}+\arcsin(\frac{5\sqrt{29}}{29})\text{, }n_{2}\in \mathrm{Z}\text{, }d=2\pi n_{2}+\arcsin(\frac{5\sqrt{29}}{29})\text{, }n_{2}\in \mathrm{Z}
اشتراک گذاشتن
رونوشتشده در تخته یادداشت
نمونه
معادله درجه دوم
{ x } ^ { 2 } - 4 x - 5 = 0
مثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادله خطی
y = 3x + 4
حساب
699 * 533
ماتریس
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادله همزمان
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
تمایز
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ادغام
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
محدودیت
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}