پرش به محتوای اصلی
برای s حل کنید
Tick mark Image

مشکلات مشابه از جستجوی وب

اشتراک گذاشتن

\int e^{x}\cos(x)\mathrm{d}x=\frac{1}{2}e^{x}\cos(x)+\frac{1}{2}ie^{x}s
از اموال توزیعی برای ضرب \frac{1}{2}e^{x} در \cos(x)+si استفاده کنید.
\frac{1}{2}e^{x}\cos(x)+\frac{1}{2}ie^{x}s=\int e^{x}\cos(x)\mathrm{d}x
طرفین معادله را جابجا کنید تا همه جملات متغیر در سمت چپ قرار گیرند.
\frac{1}{2}ie^{x}s=\int e^{x}\cos(x)\mathrm{d}x-\frac{1}{2}e^{x}\cos(x)
\frac{1}{2}e^{x}\cos(x) را از هر دو طرف تفریق کنید.
\frac{ie^{x}}{2}s=\int \cos(x)e^{x}\mathrm{d}x-\frac{\cos(x)e^{x}}{2}
معادله به شکل استاندارد است.
\frac{2\times \frac{ie^{x}}{2}s}{ie^{x}}=\frac{2\left(-\frac{\cos(x)e^{x}}{2}+\left(\frac{1}{4}-\frac{1}{4}i\right)e^{i\ln(e^{x})+x}+\left(\frac{1}{4}+\frac{1}{4}i\right)e^{-i\ln(e^{x})+x}+С\right)}{ie^{x}}
هر دو طرف بر \frac{1}{2}ie^{x} تقسیم شوند.
s=\frac{2\left(-\frac{\cos(x)e^{x}}{2}+\left(\frac{1}{4}-\frac{1}{4}i\right)e^{i\ln(e^{x})+x}+\left(\frac{1}{4}+\frac{1}{4}i\right)e^{-i\ln(e^{x})+x}+С\right)}{ie^{x}}
تقسیم بر \frac{1}{2}ie^{x}، ضرب در \frac{1}{2}ie^{x} را لغو می‌کند.
s=\frac{\left(-1-i\right)e^{i\ln(e^{x})}+\left(1-i\right)e^{-i\ln(e^{x})}+\frac{2С}{e^{x}}+2i\cos(x)}{2}
\left(\frac{1}{4}+\frac{1}{4}i\right)e^{x-i\ln(e^{x})}+\left(\frac{1}{4}-\frac{1}{4}i\right)e^{x+i\ln(e^{x})}+С-\frac{e^{x}\cos(x)}{2} را بر \frac{1}{2}ie^{x} تقسیم کنید.