پرش به محتوای اصلی
ارزیابی
Tick mark Image
مشتق گرفتن w.r.t. y
Tick mark Image

مشکلات مشابه از جستجوی وب

اشتراک گذاشتن

\int x^{2}+y^{2}\mathrm{d}x
ابتدا انتگرال نامعین را محاسبه کنید.
\int x^{2}\mathrm{d}x+\int y^{2}\mathrm{d}x
حاصل جمع را جمله به جمله انتگرال بگیرید.
\frac{x^{3}}{3}+\int y^{2}\mathrm{d}x
چون \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} برای k\neq -1 است، \int x^{2}\mathrm{d}x را با \frac{x^{3}}{3}جایگزین کنید.
\frac{x^{3}}{3}+y^{2}x
با استفاده از جدول انتگرال‌های مشترک قانون \int a\mathrm{d}x=ax، انتگرال y^{2} را بگیرید.
\frac{R_{2}^{3}}{3}+y^{2}R_{2}-\left(\frac{R_{1}^{3}}{3}+y^{2}R_{1}\right)
انتگرال معین برابر است با ضدمشتق عبارت محاسبه‌شده در حد بالای انتگرال‌گیری منهای ضدمشتق محاسبه‌شده در حد پایین انتگرال‌گیری.
\frac{\left(-R_{1}+R_{2}\right)\left(3y^{2}+R_{1}^{2}+R_{1}R_{2}+R_{2}^{2}\right)}{3}
ساده کنید.