پرش به محتوای اصلی
ارزیابی
Tick mark Image

مشکلات مشابه از جستجوی وب

اشتراک گذاشتن

\int _{0}^{1}x^{2}-2x+1\mathrm{d}x
از قضیه دو جمله‌ای \left(a-b\right)^{2}=a^{2}-2ab+b^{2} برای گسترش \left(x-1\right)^{2} استفاده کنید.
\int x^{2}-2x+1\mathrm{d}x
ابتدا انتگرال نامعین را محاسبه کنید.
\int x^{2}\mathrm{d}x+\int -2x\mathrm{d}x+\int 1\mathrm{d}x
حاصل جمع را جمله به جمله انتگرال بگیرید.
\int x^{2}\mathrm{d}x-2\int x\mathrm{d}x+\int 1\mathrm{d}x
در هر جمله، عدد ثابت را فاکتور بگیرید.
\frac{x^{3}}{3}-2\int x\mathrm{d}x+\int 1\mathrm{d}x
چون \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} برای k\neq -1 است، \int x^{2}\mathrm{d}x را با \frac{x^{3}}{3}جایگزین کنید.
\frac{x^{3}}{3}-x^{2}+\int 1\mathrm{d}x
چون \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} برای k\neq -1 است، \int x\mathrm{d}x را با \frac{x^{2}}{2}جایگزین کنید. -2 بار \frac{x^{2}}{2}.
\frac{x^{3}}{3}-x^{2}+x
با استفاده از جدول انتگرال‌های مشترک قانون \int a\mathrm{d}x=ax، انتگرال 1 را بگیرید.
\frac{1^{3}}{3}-1^{2}+1-\left(\frac{0^{3}}{3}-0^{2}+0\right)
انتگرال معین برابر است با ضدمشتق عبارت محاسبه‌شده در حد بالای انتگرال‌گیری منهای ضدمشتق محاسبه‌شده در حد پایین انتگرال‌گیری.
\frac{1}{3}
ساده کنید.