ارزیابی
-\frac{27}{2}=-13.5
اشتراک گذاشتن
رونوشتشده در تخته یادداشت
\int _{0}^{1}6x^{2}-10x+9x-15\mathrm{d}x
ویژگی توزیعی را از طریق ضرب کردن هر گزاره از 2x+3 در هر گزاره از 3x-5 اعمال کنید.
\int _{0}^{1}6x^{2}-x-15\mathrm{d}x
-10x و 9x را برای به دست آوردن -x ترکیب کنید.
\int 6x^{2}-x-15\mathrm{d}x
ابتدا انتگرال نامعین را محاسبه کنید.
\int 6x^{2}\mathrm{d}x+\int -x\mathrm{d}x+\int -15\mathrm{d}x
حاصل جمع را جمله به جمله انتگرال بگیرید.
6\int x^{2}\mathrm{d}x-\int x\mathrm{d}x+\int -15\mathrm{d}x
در هر جمله، عدد ثابت را فاکتور بگیرید.
2x^{3}-\int x\mathrm{d}x+\int -15\mathrm{d}x
چون \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} برای k\neq -1 است، \int x^{2}\mathrm{d}x را با \frac{x^{3}}{3}جایگزین کنید. 6 بار \frac{x^{3}}{3}.
2x^{3}-\frac{x^{2}}{2}+\int -15\mathrm{d}x
چون \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} برای k\neq -1 است، \int x\mathrm{d}x را با \frac{x^{2}}{2}جایگزین کنید. -1 بار \frac{x^{2}}{2}.
2x^{3}-\frac{x^{2}}{2}-15x
با استفاده از جدول انتگرالهای مشترک قانون \int a\mathrm{d}x=ax، انتگرال -15 را بگیرید.
2\times 1^{3}-\frac{1^{2}}{2}-15-\left(2\times 0^{3}-\frac{0^{2}}{2}-15\times 0\right)
انتگرال معین برابر است با ضدمشتق عبارت محاسبهشده در حد بالای انتگرالگیری منهای ضدمشتق محاسبهشده در حد پایین انتگرالگیری.
-\frac{27}{2}
ساده کنید.
نمونه
معادله درجه دوم
{ x } ^ { 2 } - 4 x - 5 = 0
مثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادله خطی
y = 3x + 4
حساب
699 * 533
ماتریس
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادله همزمان
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
تمایز
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ادغام
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
محدودیت
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}