پرش به محتوای اصلی
ارزیابی
Tick mark Image

مشکلات مشابه از جستجوی وب

اشتراک گذاشتن

\int \sqrt{2x}\mathrm{d}x
ابتدا انتگرال نامعین را محاسبه کنید.
\sqrt{2}\int \sqrt{x}\mathrm{d}x
با استفاده از \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x عدد ثابت را فاکتور بگیرید.
\sqrt{2}\times \frac{2x^{\frac{3}{2}}}{3}
\sqrt{x} را به‌عنوان x^{\frac{1}{2}} بازنویسی کنید. چون \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} برای k\neq -1 است، \int x^{\frac{1}{2}}\mathrm{d}x را با \frac{x^{\frac{3}{2}}}{\frac{3}{2}}جایگزین کنید. ساده کنید.
\frac{2\sqrt{2}x^{\frac{3}{2}}}{3}
ساده کنید.
\frac{2}{3}\times 2^{\frac{1}{2}}\times \left(\frac{1}{2}\right)^{\frac{3}{2}}-\frac{2}{3}\times 2^{\frac{1}{2}}\times 0^{\frac{3}{2}}
انتگرال معین برابر است با ضدمشتق عبارت محاسبه‌شده در حد بالای انتگرال‌گیری منهای ضدمشتق محاسبه‌شده در حد پایین انتگرال‌گیری.
\frac{1}{3}
ساده کنید.