پرش به محتوای اصلی
ارزیابی
Tick mark Image

مشکلات مشابه از جستجوی وب

اشتراک گذاشتن

\int 4x^{2}-6x+2\mathrm{d}x
ابتدا انتگرال نامعین را محاسبه کنید.
\int 4x^{2}\mathrm{d}x+\int -6x\mathrm{d}x+\int 2\mathrm{d}x
حاصل جمع را جمله به جمله انتگرال بگیرید.
4\int x^{2}\mathrm{d}x-6\int x\mathrm{d}x+\int 2\mathrm{d}x
در هر جمله، عدد ثابت را فاکتور بگیرید.
\frac{4x^{3}}{3}-6\int x\mathrm{d}x+\int 2\mathrm{d}x
چون \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} برای k\neq -1 است، \int x^{2}\mathrm{d}x را با \frac{x^{3}}{3}جایگزین کنید. 4 بار \frac{x^{3}}{3}.
\frac{4x^{3}}{3}-3x^{2}+\int 2\mathrm{d}x
چون \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} برای k\neq -1 است، \int x\mathrm{d}x را با \frac{x^{2}}{2}جایگزین کنید. -6 بار \frac{x^{2}}{2}.
\frac{4x^{3}}{3}-3x^{2}+2x
با استفاده از جدول انتگرال‌های مشترک قانون \int a\mathrm{d}x=ax، انتگرال 2 را بگیرید.
\frac{4}{3}\times 3^{3}-3\times 3^{2}+2\times 3-\left(\frac{4}{3}\left(-2\right)^{3}-3\left(-2\right)^{2}+2\left(-2\right)\right)
انتگرال معین برابر است با ضدمشتق عبارت محاسبه‌شده در حد بالای انتگرال‌گیری منهای ضدمشتق محاسبه‌شده در حد پایین انتگرال‌گیری.
\frac{125}{3}
ساده کنید.