پرش به محتوای اصلی
ارزیابی
Tick mark Image

مشکلات مشابه از جستجوی وب

اشتراک گذاشتن

\int _{-1}^{2}4x^{2}-20x+25\mathrm{d}x
از قضیه دو جمله‌ای \left(a-b\right)^{2}=a^{2}-2ab+b^{2} برای گسترش \left(2x-5\right)^{2} استفاده کنید.
\int 4x^{2}-20x+25\mathrm{d}x
ابتدا انتگرال نامعین را محاسبه کنید.
\int 4x^{2}\mathrm{d}x+\int -20x\mathrm{d}x+\int 25\mathrm{d}x
حاصل جمع را جمله به جمله انتگرال بگیرید.
4\int x^{2}\mathrm{d}x-20\int x\mathrm{d}x+\int 25\mathrm{d}x
در هر جمله، عدد ثابت را فاکتور بگیرید.
\frac{4x^{3}}{3}-20\int x\mathrm{d}x+\int 25\mathrm{d}x
چون \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} برای k\neq -1 است، \int x^{2}\mathrm{d}x را با \frac{x^{3}}{3}جایگزین کنید. 4 بار \frac{x^{3}}{3}.
\frac{4x^{3}}{3}-10x^{2}+\int 25\mathrm{d}x
چون \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} برای k\neq -1 است، \int x\mathrm{d}x را با \frac{x^{2}}{2}جایگزین کنید. -20 بار \frac{x^{2}}{2}.
\frac{4x^{3}}{3}-10x^{2}+25x
با استفاده از جدول انتگرال‌های مشترک قانون \int a\mathrm{d}x=ax، انتگرال 25 را بگیرید.
\frac{4}{3}\times 2^{3}-10\times 2^{2}+25\times 2-\left(\frac{4}{3}\left(-1\right)^{3}-10\left(-1\right)^{2}+25\left(-1\right)\right)
انتگرال معین برابر است با ضدمشتق عبارت محاسبه‌شده در حد بالای انتگرال‌گیری منهای ضدمشتق محاسبه‌شده در حد پایین انتگرال‌گیری.
57
ساده کنید.