پرش به محتوای اصلی
ارزیابی
Tick mark Image
مشتق گرفتن w.r.t. x
Tick mark Image

مشکلات مشابه از جستجوی وب

اشتراک گذاشتن

\int 20x\left(8x^{3}+36x^{2}+54x+27\right)\mathrm{d}x
از قضیه دو جمله‌ای \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} برای گسترش \left(2x+3\right)^{3} استفاده کنید.
\int 160x^{4}+720x^{3}+1080x^{2}+540x\mathrm{d}x
از اموال توزیعی برای ضرب 20x در 8x^{3}+36x^{2}+54x+27 استفاده کنید.
\int 160x^{4}\mathrm{d}x+\int 720x^{3}\mathrm{d}x+\int 1080x^{2}\mathrm{d}x+\int 540x\mathrm{d}x
حاصل جمع را جمله به جمله انتگرال بگیرید.
160\int x^{4}\mathrm{d}x+720\int x^{3}\mathrm{d}x+1080\int x^{2}\mathrm{d}x+540\int x\mathrm{d}x
در هر جمله، عدد ثابت را فاکتور بگیرید.
32x^{5}+720\int x^{3}\mathrm{d}x+1080\int x^{2}\mathrm{d}x+540\int x\mathrm{d}x
چون \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} برای k\neq -1 است، \int x^{4}\mathrm{d}x را با \frac{x^{5}}{5}جایگزین کنید. 160 بار \frac{x^{5}}{5}.
32x^{5}+180x^{4}+1080\int x^{2}\mathrm{d}x+540\int x\mathrm{d}x
چون \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} برای k\neq -1 است، \int x^{3}\mathrm{d}x را با \frac{x^{4}}{4}جایگزین کنید. 720 بار \frac{x^{4}}{4}.
32x^{5}+180x^{4}+360x^{3}+540\int x\mathrm{d}x
چون \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} برای k\neq -1 است، \int x^{2}\mathrm{d}x را با \frac{x^{3}}{3}جایگزین کنید. 1080 بار \frac{x^{3}}{3}.
32x^{5}+180x^{4}+360x^{3}+270x^{2}
چون \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} برای k\neq -1 است، \int x\mathrm{d}x را با \frac{x^{2}}{2}جایگزین کنید. 540 بار \frac{x^{2}}{2}.
270x^{2}+360x^{3}+180x^{4}+32x^{5}+С
اگر F\left(x\right) ضدمشتق f\left(x\right) است، پس مجموعه همه ضدمشتق‌های f\left(x\right) توسط F\left(x\right)+C به‌دست می‌آید. بنابراین ثابت انتگرال‌گیری C\in \mathrm{R} را به نتیجه اضافه کنید.