پرش به محتوای اصلی
ارزیابی
Tick mark Image
مشتق گرفتن w.r.t. x
Tick mark Image

مشکلات مشابه از جستجوی وب

اشتراک گذاشتن

\int 9x^{2}-12x+4\mathrm{d}x
از قضیه دو جمله‌ای \left(a-b\right)^{2}=a^{2}-2ab+b^{2} برای گسترش \left(3x-2\right)^{2} استفاده کنید.
\int 9x^{2}\mathrm{d}x+\int -12x\mathrm{d}x+\int 4\mathrm{d}x
حاصل جمع را جمله به جمله انتگرال بگیرید.
9\int x^{2}\mathrm{d}x-12\int x\mathrm{d}x+\int 4\mathrm{d}x
در هر جمله، عدد ثابت را فاکتور بگیرید.
3x^{3}-12\int x\mathrm{d}x+\int 4\mathrm{d}x
چون \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} برای k\neq -1 است، \int x^{2}\mathrm{d}x را با \frac{x^{3}}{3}جایگزین کنید. 9 بار \frac{x^{3}}{3}.
3x^{3}-6x^{2}+\int 4\mathrm{d}x
چون \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} برای k\neq -1 است، \int x\mathrm{d}x را با \frac{x^{2}}{2}جایگزین کنید. -12 بار \frac{x^{2}}{2}.
3x^{3}-6x^{2}+4x
با استفاده از جدول انتگرال‌های مشترک قانون \int a\mathrm{d}x=ax، انتگرال 4 را بگیرید.
3x^{3}-6x^{2}+4x+С
اگر F\left(x\right) ضدمشتق f\left(x\right) است، پس مجموعه همه ضدمشتق‌های f\left(x\right) توسط F\left(x\right)+C به‌دست می‌آید. بنابراین ثابت انتگرال‌گیری C\in \mathrm{R} را به نتیجه اضافه کنید.