ارزیابی
\frac{x^{2}}{2}-25x+С
مشتق گرفتن w.r.t. x
x-25
اشتراک گذاشتن
رونوشتشده در تخته یادداشت
\int \left(\sqrt{x}\right)^{2}-5^{2}\mathrm{d}x
\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right) را در نظر بگیرید. عمل ضرب را میتوان با استفاده از قاعده \left(a-b\right)\left(a+b\right)=a^{2}-b^{2} به تفاضل مربعها تغییر داد.
\int x-5^{2}\mathrm{d}x
\sqrt{x} را به توان 2 محاسبه کنید و x را به دست آورید.
\int x-25\mathrm{d}x
5 را به توان 2 محاسبه کنید و 25 را به دست آورید.
\int x\mathrm{d}x+\int -25\mathrm{d}x
حاصل جمع را جمله به جمله انتگرال بگیرید.
\frac{x^{2}}{2}+\int -25\mathrm{d}x
چون \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} برای k\neq -1 است، \int x\mathrm{d}x را با \frac{x^{2}}{2}جایگزین کنید.
\frac{x^{2}}{2}-25x
با استفاده از جدول انتگرالهای مشترک قانون \int a\mathrm{d}x=ax، انتگرال -25 را بگیرید.
\frac{x^{2}}{2}-25x+С
اگر F\left(x\right) ضدمشتق f\left(x\right) است، پس مجموعه همه ضدمشتقهای f\left(x\right) توسط F\left(x\right)+C بهدست میآید. بنابراین ثابت انتگرالگیری C\in \mathrm{R} را به نتیجه اضافه کنید.
نمونه
معادله درجه دوم
{ x } ^ { 2 } - 4 x - 5 = 0
مثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادله خطی
y = 3x + 4
حساب
699 * 533
ماتریس
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادله همزمان
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
تمایز
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ادغام
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
محدودیت
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}