ارزیابی
2x^{3}+\frac{x^{2}}{2}-15x+С
مشتق گرفتن w.r.t. x
6x^{2}+x-15
مسابقه
Integration
5 مشکلات مشابه:
\int \frac { 18 x ^ { 3 } + 33 x ^ { 2 } - 40 x - 75 } { 3 x + 5 } d x
اشتراک گذاشتن
رونوشتشده در تخته یادداشت
\int \frac{\left(2x-3\right)\left(3x+5\right)^{2}}{3x+5}\mathrm{d}x
عباراتی که قبلاً از آنها فاکتور گرفته نشدهاند، در \frac{18x^{3}+33x^{2}-40x-75}{3x+5} فاکتور گرفته شوند.
\int \left(2x-3\right)\left(3x+5\right)\mathrm{d}x
3x+5 را هم در صورت و هم مخرج ساده کنید.
\int 6x^{2}+x-15\mathrm{d}x
عبارت گسترش داده شود.
\int 6x^{2}\mathrm{d}x+\int x\mathrm{d}x+\int -15\mathrm{d}x
حاصل جمع را جمله به جمله انتگرال بگیرید.
6\int x^{2}\mathrm{d}x+\int x\mathrm{d}x+\int -15\mathrm{d}x
در هر جمله، عدد ثابت را فاکتور بگیرید.
2x^{3}+\int x\mathrm{d}x+\int -15\mathrm{d}x
چون \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} برای k\neq -1 است، \int x^{2}\mathrm{d}x را با \frac{x^{3}}{3}جایگزین کنید. 6 بار \frac{x^{3}}{3}.
2x^{3}+\frac{x^{2}}{2}+\int -15\mathrm{d}x
چون \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} برای k\neq -1 است، \int x\mathrm{d}x را با \frac{x^{2}}{2}جایگزین کنید.
2x^{3}+\frac{x^{2}}{2}-15x
با استفاده از جدول انتگرالهای مشترک قانون \int a\mathrm{d}x=ax، انتگرال -15 را بگیرید.
-15x+\frac{x^{2}}{2}+2x^{3}+С
اگر F\left(x\right) ضدمشتق f\left(x\right) است، پس مجموعه همه ضدمشتقهای f\left(x\right) توسط F\left(x\right)+C بهدست میآید. بنابراین ثابت انتگرالگیری C\in \mathrm{R} را به نتیجه اضافه کنید.
نمونه
معادله درجه دوم
{ x } ^ { 2 } - 4 x - 5 = 0
مثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادله خطی
y = 3x + 4
حساب
699 * 533
ماتریس
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادله همزمان
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
تمایز
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ادغام
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
محدودیت
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}