پرش به محتوای اصلی
برای x حل کنید
Tick mark Image
گراف

مشکلات مشابه از جستجوی وب

اشتراک گذاشتن

\frac{13}{9}x^{2}+1-x^{2}\leq \frac{4}{3}x
x^{2} را از هر دو طرف تفریق کنید.
\frac{4}{9}x^{2}+1\leq \frac{4}{3}x
\frac{13}{9}x^{2} و -x^{2} را برای به دست آوردن \frac{4}{9}x^{2} ترکیب کنید.
\frac{4}{9}x^{2}+1-\frac{4}{3}x\leq 0
\frac{4}{3}x را از هر دو طرف تفریق کنید.
\frac{4}{9}x^{2}+1-\frac{4}{3}x=0
برای حل نامعادله، سمت چپ را فاکتور بگیرید. چند جمله‌ای درجه دوم را می‌توان با استفاده از تبدیل ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) فاکتور گرفت، به طوری که x_{1} و x_{2} راه حل معادله درجه دوم ax^{2}+bx+c=0 است.
x=\frac{-\left(-\frac{4}{3}\right)±\sqrt{\left(-\frac{4}{3}\right)^{2}-4\times \frac{4}{9}\times 1}}{\frac{4}{9}\times 2}
همه معادلات به شکل ax^{2}+bx+c=0 را می‌توان با استفاده از فرمول درجه دوم حل کرد: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. در فرمول درجه دوم \frac{4}{9} را با a، -\frac{4}{3} را با b، و 1 را با c جایگزین کنید.
x=\frac{\frac{4}{3}±0}{\frac{8}{9}}
محاسبات را انجام دهید.
x=\frac{3}{2}
راهکارها مشابه هستند.
\frac{4}{9}\left(x-\frac{3}{2}\right)^{2}\leq 0
با استفاده از راه‌حل‌های به‌دست‌آمده، نامعادله را بازنویسی کنید.
x=\frac{3}{2}
نابرابری برای x=\frac{3}{2} وجود دارد.