پرش به محتوای اصلی
ارزیابی
Tick mark Image
مشتق گرفتن w.r.t. x
Tick mark Image
گراف

مشکلات مشابه از جستجوی وب

اشتراک گذاشتن

\frac{-6}{\left(x-3\right)\left(x-1\right)}-\frac{3}{3-x}-\frac{4}{x-1}
x^{2}-4x+3 را فاکتور بگیرید.
\frac{-6}{\left(x-3\right)\left(x-1\right)}-\frac{3\left(-1\right)\left(x-1\right)}{\left(x-3\right)\left(x-1\right)}-\frac{4}{x-1}
برای اضافه کردن یا تفریق عبارت‌ها، آنها را گسترش دهید تا مخرج آنها یکی شود. کوچک‌ترین مضرب مشترک \left(x-3\right)\left(x-1\right) و 3-x، \left(x-3\right)\left(x-1\right) است. \frac{3}{3-x} بار \frac{-\left(x-1\right)}{-\left(x-1\right)}.
\frac{-6-3\left(-1\right)\left(x-1\right)}{\left(x-3\right)\left(x-1\right)}-\frac{4}{x-1}
از آنجا که \frac{-6}{\left(x-3\right)\left(x-1\right)} و \frac{3\left(-1\right)\left(x-1\right)}{\left(x-3\right)\left(x-1\right)} دارای مخرج مشترک هستند، با کم کردن صورت کسرها آنها را تفریق کنید.
\frac{-6+3x-3}{\left(x-3\right)\left(x-1\right)}-\frac{4}{x-1}
عمل ضرب را در -6-3\left(-1\right)\left(x-1\right) انجام دهید.
\frac{-9+3x}{\left(x-3\right)\left(x-1\right)}-\frac{4}{x-1}
جملات با متغیر یکسان را در -6+3x-3 ترکیب کنید.
\frac{3\left(x-3\right)}{\left(x-3\right)\left(x-1\right)}-\frac{4}{x-1}
عباراتی که قبلاً از آنها فاکتور گرفته نشده‌اند، در \frac{-9+3x}{\left(x-3\right)\left(x-1\right)} فاکتور گرفته شوند.
\frac{3}{x-1}-\frac{4}{x-1}
x-3 را هم در صورت و هم مخرج ساده کنید.
\frac{-1}{x-1}
از آنجا که \frac{3}{x-1} و \frac{4}{x-1} دارای مخرج مشترک هستند، با کم کردن صورت کسرها آنها را تفریق کنید. تفریق 4 را از 3 برای به دست آوردن -1 تفریق کنید.