پرش به محتوای اصلی
ارزیابی
Tick mark Image
مشتق گرفتن w.r.t. x
Tick mark Image
گراف

مشکلات مشابه از جستجوی وب

اشتراک گذاشتن

\frac{x}{\frac{xx}{x}-\frac{1}{x}}
برای اضافه کردن یا تفریق عبارت‌ها، آنها را گسترش دهید تا مخرج آنها یکی شود. x بار \frac{x}{x}.
\frac{x}{\frac{xx-1}{x}}
از آنجا که \frac{xx}{x} و \frac{1}{x} دارای مخرج مشترک هستند، با کم کردن صورت کسرها آنها را تفریق کنید.
\frac{x}{\frac{x^{2}-1}{x}}
عمل ضرب را در xx-1 انجام دهید.
\frac{xx}{x^{2}-1}
x را بر \frac{x^{2}-1}{x} با ضرب x در معکوس \frac{x^{2}-1}{x} تقسیم کنید.
\frac{x^{2}}{x^{2}-1}
x و x را برای دستیابی به x^{2} ضرب کنید.
\frac{\left(x^{1}-\frac{1}{x}\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1})-x^{1}\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}-\frac{1}{x})}{\left(x^{1}-\frac{1}{x}\right)^{2}}
برای هر دو تابع مشتق‌پذیر، مشتق خارج قسمت دو تابع دترمینان ضربدر مشتق صورت کسر منهای صورت کسر ضربدر مشتق دترمینان است که همه بر مجذور دترمینان تقسیم می‌شوند.
\frac{\left(x^{1}-\frac{1}{x}\right)x^{1-1}-x^{1}\left(x^{1-1}-\left(-x^{-1-1}\right)\right)}{\left(x^{1}-\frac{1}{x}\right)^{2}}
مشتق یک چند جمله‌ای، مجموع مشتق‌های عبارت‌های آن است. مشتق یک عبارت ثابت 0 است. مشتق ax^{n} برابر است با nax^{n-1}.
\frac{\left(x^{1}-\frac{1}{x}\right)x^{0}-x^{1}\left(x^{0}+x^{-2}\right)}{\left(x^{1}-\frac{1}{x}\right)^{2}}
ساده کنید.
\frac{x^{1}x^{0}-\frac{1}{x}x^{0}-x^{1}\left(x^{0}+x^{-2}\right)}{\left(x^{1}-\frac{1}{x}\right)^{2}}
x^{1}-\frac{1}{x} بار x^{0}.
\frac{x^{1}x^{0}-\frac{1}{x}x^{0}-\left(x^{1}x^{0}+x^{1}x^{-2}\right)}{\left(x^{1}-\frac{1}{x}\right)^{2}}
x^{1} بار x^{0}+x^{-2}.
\frac{x^{1}-\frac{1}{x}-\left(x^{1}+x^{1-2}\right)}{\left(x^{1}-\frac{1}{x}\right)^{2}}
برای ضرب توان‌های دارای پایه مشابه، توان‌های آنها را اضافه کنید.
\frac{x^{1}-\frac{1}{x}-\left(x^{1}+\frac{1}{x}\right)}{\left(x^{1}-\frac{1}{x}\right)^{2}}
ساده کنید.
\frac{-2\times \frac{1}{x}}{\left(x^{1}-\frac{1}{x}\right)^{2}}
جمله‌های دارای متغیر مساوی را ترکیب کنید.
\frac{-2\times \frac{1}{x}}{\left(x-\frac{1}{x}\right)^{2}}
برای هر عبارت t، t^{1}=t.