پرش به محتوای اصلی
عامل
Tick mark Image
ارزیابی
Tick mark Image

مشکلات مشابه از جستجوی وب

اشتراک گذاشتن

\frac{3a^{4}-2a^{3}+3a^{2}-6a}{6}
\frac{1}{6} را فاکتور بگیرید.
a\left(3a^{3}-2a^{2}+3a-6\right)
3a^{4}-2a^{3}+3a^{2}-6a را در نظر بگیرید. a را فاکتور بگیرید.
\frac{a\left(3a^{3}-2a^{2}+3a-6\right)}{6}
عبارت فاکتورگیری‌شده کامل را بازنویسی کنید. از چندجمله‌ای 3a^{3}-2a^{2}+3a-6 فاکتور گرفته نشده زیرا هیچ ریشه گویایی ندارد.
\frac{3a^{4}}{6}-\frac{2a^{3}}{6}+\frac{a^{2}}{2}-a
برای اضافه کردن یا تفریق عبارت‌ها، آنها را گسترش دهید تا مخرج آنها یکی شود. کوچک‌ترین مضرب مشترک 2 و 3، 6 است. \frac{a^{4}}{2} بار \frac{3}{3}. \frac{a^{3}}{3} بار \frac{2}{2}.
\frac{3a^{4}-2a^{3}}{6}+\frac{a^{2}}{2}-a
از آنجا که \frac{3a^{4}}{6} و \frac{2a^{3}}{6} دارای مخرج مشترک هستند، با کم کردن صورت کسرها آنها را تفریق کنید.
\frac{3a^{4}-2a^{3}}{6}+\frac{3a^{2}}{6}-a
برای اضافه کردن یا تفریق عبارت‌ها، آنها را گسترش دهید تا مخرج آنها یکی شود. کوچک‌ترین مضرب مشترک 6 و 2، 6 است. \frac{a^{2}}{2} بار \frac{3}{3}.
\frac{3a^{4}-2a^{3}+3a^{2}}{6}-a
از آنجا که \frac{3a^{4}-2a^{3}}{6} و \frac{3a^{2}}{6} دارای مخرج مشترک هستند، با افزودن صورت کسرها آنها را جمع کنید.
\frac{3a^{4}-2a^{3}+3a^{2}}{6}-\frac{6a}{6}
برای اضافه کردن یا تفریق عبارت‌ها، آنها را گسترش دهید تا مخرج آنها یکی شود. a بار \frac{6}{6}.
\frac{3a^{4}-2a^{3}+3a^{2}-6a}{6}
از آنجا که \frac{3a^{4}-2a^{3}+3a^{2}}{6} و \frac{6a}{6} دارای مخرج مشترک هستند، با کم کردن صورت کسرها آنها را تفریق کنید.