پرش به محتوای اصلی
ارزیابی
Tick mark Image
بخش حقیقی
Tick mark Image

مشکلات مشابه از جستجوی وب

اشتراک گذاشتن

\frac{104i\left(5-i\right)}{\left(5+i\right)\left(5-i\right)}
هر دو صورت و مخرج کسر را در مزدوج مختلط مخرج کسر، 5-i، ضرب کنید.
\frac{104i\left(5-i\right)}{5^{2}-i^{2}}
عمل ضرب را می‌توان با استفاده از قاعده \left(a-b\right)\left(a+b\right)=a^{2}-b^{2} به تفاضل مربع‌ها تغییر داد.
\frac{104i\left(5-i\right)}{26}
طبق تعريف، i^{2} عبارت است از -1. مخرج را محاسبه کنید.
\frac{104i\times 5+104\left(-1\right)i^{2}}{26}
104i بار 5-i.
\frac{104i\times 5+104\left(-1\right)\left(-1\right)}{26}
طبق تعريف، i^{2} عبارت است از -1.
\frac{104+520i}{26}
عمل ضرب را در 104i\times 5+104\left(-1\right)\left(-1\right) انجام دهید. عبارت‌ها را دوباره مرتب کنید.
4+20i
104+520i را بر 26 برای به دست آوردن 4+20i تقسیم کنید.
Re(\frac{104i\left(5-i\right)}{\left(5+i\right)\left(5-i\right)})
هر دو صورت و مخرج \frac{104i}{5+i} را در مزدوج مختلط مخرج کسر، 5-i ضرب کنید.
Re(\frac{104i\left(5-i\right)}{5^{2}-i^{2}})
عمل ضرب را می‌توان با استفاده از قاعده \left(a-b\right)\left(a+b\right)=a^{2}-b^{2} به تفاضل مربع‌ها تغییر داد.
Re(\frac{104i\left(5-i\right)}{26})
طبق تعريف، i^{2} عبارت است از -1. مخرج را محاسبه کنید.
Re(\frac{104i\times 5+104\left(-1\right)i^{2}}{26})
104i بار 5-i.
Re(\frac{104i\times 5+104\left(-1\right)\left(-1\right)}{26})
طبق تعريف، i^{2} عبارت است از -1.
Re(\frac{104+520i}{26})
عمل ضرب را در 104i\times 5+104\left(-1\right)\left(-1\right) انجام دهید. عبارت‌ها را دوباره مرتب کنید.
Re(4+20i)
104+520i را بر 26 برای به دست آوردن 4+20i تقسیم کنید.
4
جزء حقیقی 4+20i عبارت است از 4.