پرش به محتوای اصلی
ارزیابی
Tick mark Image
مشتق گرفتن w.r.t. x
Tick mark Image
گراف

مشکلات مشابه از جستجوی وب

اشتراک گذاشتن

\frac{d}{x^{2}-2x+5}x
\frac{1}{x^{2}-2x+5}d را به عنوان یک کسر تکی نشان دهید.
\frac{dx}{x^{2}-2x+5}
\frac{d}{x^{2}-2x+5}x را به عنوان یک کسر تکی نشان دهید.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{d}{x^{2}-2x+5}x)
\frac{1}{x^{2}-2x+5}d را به عنوان یک کسر تکی نشان دهید.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{dx}{x^{2}-2x+5})
\frac{d}{x^{2}-2x+5}x را به عنوان یک کسر تکی نشان دهید.
\frac{\left(x^{2}-2x^{1}+5\right)\frac{\mathrm{d}}{\mathrm{d}x}(dx^{1})-dx^{1}\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-2x^{1}+5)}{\left(x^{2}-2x^{1}+5\right)^{2}}
برای هر دو تابع مشتق‌پذیر، مشتق خارج قسمت دو تابع دترمینان ضربدر مشتق صورت کسر منهای صورت کسر ضربدر مشتق دترمینان است که همه بر مجذور دترمینان تقسیم می‌شوند.
\frac{\left(x^{2}-2x^{1}+5\right)dx^{1-1}-dx^{1}\left(2x^{2-1}-2x^{1-1}\right)}{\left(x^{2}-2x^{1}+5\right)^{2}}
مشتق یک چند جمله‌ای، مجموع مشتق‌های عبارت‌های آن است. مشتق یک عبارت ثابت 0 است. مشتق ax^{n} برابر است با nax^{n-1}.
\frac{\left(x^{2}-2x^{1}+5\right)dx^{0}-dx^{1}\left(2x^{1}-2x^{0}\right)}{\left(x^{2}-2x^{1}+5\right)^{2}}
ساده کنید.
\frac{x^{2}dx^{0}-2x^{1}dx^{0}+5dx^{0}-dx^{1}\left(2x^{1}-2x^{0}\right)}{\left(x^{2}-2x^{1}+5\right)^{2}}
x^{2}-2x^{1}+5 بار dx^{0}.
\frac{x^{2}dx^{0}-2x^{1}dx^{0}+5dx^{0}-\left(dx^{1}\times 2x^{1}+dx^{1}\left(-2\right)x^{0}\right)}{\left(x^{2}-2x^{1}+5\right)^{2}}
dx^{1} بار 2x^{1}-2x^{0}.
\frac{dx^{2}-2dx^{1}+5dx^{0}-\left(d\times 2x^{1+1}+d\left(-2\right)x^{1}\right)}{\left(x^{2}-2x^{1}+5\right)^{2}}
برای ضرب توان‌های دارای پایه مشابه، توان‌های آنها را اضافه کنید.
\frac{dx^{2}+\left(-2d\right)x^{1}+5dx^{0}-\left(2dx^{2}+\left(-2d\right)x^{1}\right)}{\left(x^{2}-2x^{1}+5\right)^{2}}
ساده کنید.
\frac{\left(-d\right)x^{2}+5dx^{0}}{\left(x^{2}-2x^{1}+5\right)^{2}}
جمله‌های دارای متغیر مساوی را ترکیب کنید.
\frac{\left(-d\right)x^{2}+5dx^{0}}{\left(x^{2}-2x+5\right)^{2}}
برای هر عبارت t، t^{1}=t.
\frac{\left(-d\right)x^{2}+5d\times 1}{\left(x^{2}-2x+5\right)^{2}}
برای هر عبارت t به جز 0، t^{0}=1.
\frac{\left(-d\right)x^{2}+5d}{\left(x^{2}-2x+5\right)^{2}}
برای هر عبارت t، t\times 1=t و 1t=t.