برای x حل کنید
x = \frac{\sqrt{5} + 1}{2} \approx 1.618033989
x=\frac{1-\sqrt{5}}{2}\approx -0.618033989
گراف
اشتراک گذاشتن
رونوشتشده در تخته یادداشت
x-1+\left(x+1\right)\times 2=x^{2}+2x
متغیر x نباید با هیچکدام از مقادیر -1,1 برابر باشد زیرا تقسیم بر صفر تعریف نشده است. هر دو سوی معادله در \left(x-1\right)\left(x+1\right)، کوچکترین مضرب مشترک x+1,x-1,x^{2}-1، ضرب شود.
x-1+2x+2=x^{2}+2x
از اموال توزیعی برای ضرب x+1 در 2 استفاده کنید.
3x-1+2=x^{2}+2x
x و 2x را برای به دست آوردن 3x ترکیب کنید.
3x+1=x^{2}+2x
-1 و 2 را برای دریافت 1 اضافه کنید.
3x+1-x^{2}=2x
x^{2} را از هر دو طرف تفریق کنید.
3x+1-x^{2}-2x=0
2x را از هر دو طرف تفریق کنید.
x+1-x^{2}=0
3x و -2x را برای به دست آوردن x ترکیب کنید.
-x^{2}+x+1=0
همه معادلههای به صورت ax^{2}+bx+c=0 را میتوان با استفاده از فرمول درجه دوم حل کرد: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. فرمول درجه دوم دو راهحل ارائه میکند، یکی زمانی که ± یک بهعلاوه و دیگری زمامی که یک تفریق است.
x=\frac{-1±\sqrt{1^{2}-4\left(-1\right)}}{2\left(-1\right)}
این معادله به صورت استاندارد است: ax^{2}+bx+c=0. -1 را با a، 1 را با b و 1 را با c در فرمول درجه دوم، \frac{-b±\sqrt{b^{2}-4ac}}{2a} جایگزین کنید.
x=\frac{-1±\sqrt{1-4\left(-1\right)}}{2\left(-1\right)}
1 را مجذور کنید.
x=\frac{-1±\sqrt{1+4}}{2\left(-1\right)}
-4 بار -1.
x=\frac{-1±\sqrt{5}}{2\left(-1\right)}
1 را به 4 اضافه کنید.
x=\frac{-1±\sqrt{5}}{-2}
2 بار -1.
x=\frac{\sqrt{5}-1}{-2}
اکنون معادله x=\frac{-1±\sqrt{5}}{-2} را وقتی که ± مثبت است حل کنید. -1 را به \sqrt{5} اضافه کنید.
x=\frac{1-\sqrt{5}}{2}
-1+\sqrt{5} را بر -2 تقسیم کنید.
x=\frac{-\sqrt{5}-1}{-2}
اکنون معادله x=\frac{-1±\sqrt{5}}{-2} وقتی که ± منفی است حل کنید. \sqrt{5} را از -1 تفریق کنید.
x=\frac{\sqrt{5}+1}{2}
-1-\sqrt{5} را بر -2 تقسیم کنید.
x=\frac{1-\sqrt{5}}{2} x=\frac{\sqrt{5}+1}{2}
این معادله اکنون حل شده است.
x-1+\left(x+1\right)\times 2=x^{2}+2x
متغیر x نباید با هیچکدام از مقادیر -1,1 برابر باشد زیرا تقسیم بر صفر تعریف نشده است. هر دو سوی معادله در \left(x-1\right)\left(x+1\right)، کوچکترین مضرب مشترک x+1,x-1,x^{2}-1، ضرب شود.
x-1+2x+2=x^{2}+2x
از اموال توزیعی برای ضرب x+1 در 2 استفاده کنید.
3x-1+2=x^{2}+2x
x و 2x را برای به دست آوردن 3x ترکیب کنید.
3x+1=x^{2}+2x
-1 و 2 را برای دریافت 1 اضافه کنید.
3x+1-x^{2}=2x
x^{2} را از هر دو طرف تفریق کنید.
3x+1-x^{2}-2x=0
2x را از هر دو طرف تفریق کنید.
x+1-x^{2}=0
3x و -2x را برای به دست آوردن x ترکیب کنید.
x-x^{2}=-1
1 را از هر دو طرف تفریق کنید. هر چیزی که از صفر کم میشود، منفی خودش میشود.
-x^{2}+x=-1
معادلات درجه دوم مانند این مورد را میتوان با تکمیل مربع حل کرد. به منظور تکمیل مربع، معادله باید ابتدا در قالب x^{2}+bx=c باشد.
\frac{-x^{2}+x}{-1}=-\frac{1}{-1}
هر دو طرف بر -1 تقسیم شوند.
x^{2}+\frac{1}{-1}x=-\frac{1}{-1}
تقسیم بر -1، ضرب در -1 را لغو میکند.
x^{2}-x=-\frac{1}{-1}
1 را بر -1 تقسیم کنید.
x^{2}-x=1
-1 را بر -1 تقسیم کنید.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=1+\left(-\frac{1}{2}\right)^{2}
-1، ضريب جمله x را بر 2 تقسیم کنید تا حاصل -\frac{1}{2} شود. سپس مجذور -\frac{1}{2} را به هر دو طرف معادله اضافه کنید. این مرحله، طرف چپ معادله را به یک مربع کامل تبدیل میکند.
x^{2}-x+\frac{1}{4}=1+\frac{1}{4}
-\frac{1}{2} را با مجذور کردن صورت کسر و مخرج کسر مجذور کنید.
x^{2}-x+\frac{1}{4}=\frac{5}{4}
1 را به \frac{1}{4} اضافه کنید.
\left(x-\frac{1}{2}\right)^{2}=\frac{5}{4}
عامل x^{2}-x+\frac{1}{4}. در مجموع، هرگاه x^{2}+bx+c یک مربع کامل باشد میتواند همیشه به عنوان \left(x+\frac{b}{2}\right)^{2} فاکتورگیری شود.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{5}{4}}
ریشه دوم هر دو طرف معادله را به دست آورید.
x-\frac{1}{2}=\frac{\sqrt{5}}{2} x-\frac{1}{2}=-\frac{\sqrt{5}}{2}
ساده کنید.
x=\frac{\sqrt{5}+1}{2} x=\frac{1-\sqrt{5}}{2}
\frac{1}{2} را به هر دو طرف معامله اضافه کنید.
نمونه
معادله درجه دوم
{ x } ^ { 2 } - 4 x - 5 = 0
مثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادله خطی
y = 3x + 4
حساب
699 * 533
ماتریس
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادله همزمان
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
تمایز
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ادغام
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
محدودیت
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}