پرش به محتوای اصلی
برای x حل کنید
Tick mark Image
برای x حل کنید (complex solution)
Tick mark Image
گراف

مشکلات مشابه از جستجوی وب

اشتراک گذاشتن

\frac{33^{28}}{3^{3}}=3^{5x}
برای رساندن توان به یک توان دیگر، توان‌ها را ضرب کنید. 7 و 4 را برای رسیدن به 28 ضرب کنید.
\frac{3299060778251569566188233498374847942355841}{3^{3}}=3^{5x}
33 را به توان 28 محاسبه کنید و 3299060778251569566188233498374847942355841 را به دست آورید.
\frac{3299060778251569566188233498374847942355841}{27}=3^{5x}
3 را به توان 3 محاسبه کنید و 27 را به دست آورید.
122187436231539613562527166606475849716883=3^{5x}
3299060778251569566188233498374847942355841 را بر 27 برای به دست آوردن 122187436231539613562527166606475849716883 تقسیم کنید.
3^{5x}=122187436231539613562527166606475849716883
طرفین معادله را جابجا کنید تا همه جملات متغیر در سمت چپ قرار گیرند.
\log(3^{5x})=\log(122187436231539613562527166606475849716883)
لگاریتم هر دو طرف معادله را به دست آورید.
5x\log(3)=\log(122187436231539613562527166606475849716883)
لگاریتم یک عدد که به یک توان رسیده است، تعداد توان لگاریتم عدد است.
5x=\frac{\log(122187436231539613562527166606475849716883)}{\log(3)}
هر دو طرف بر \log(3) تقسیم شوند.
5x=\log_{3}\left(122187436231539613562527166606475849716883\right)
با تغییر فرمول پایه \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
x=\frac{\log_{3}\left(122187436231539613562527166606475849716883\right)}{5}
هر دو طرف بر 5 تقسیم شوند.