پرش به محتوای اصلی
مشتق گرفتن w.r.t. x
Tick mark Image
ارزیابی
Tick mark Image
گراف

مشکلات مشابه از جستجوی وب

اشتراک گذاشتن

\frac{\mathrm{d}}{\mathrm{d}x}(\cos(2x\times 5))
قدر مطلق یک عدد حقیقی a برابر است با a که در آن a\geq 0 یا -a که در آن a<0 است. قدر مطلق 5 برابر است با 5.
\frac{\mathrm{d}}{\mathrm{d}x}(\cos(10x))
2 و 5 را برای دستیابی به 10 ضرب کنید.
\left(-\sin(10x^{1})\right)\frac{\mathrm{d}}{\mathrm{d}x}(10x^{1})
اگر F ترکیب دو تابع مشتق‌پذیر f\left(u\right) و u=g\left(x\right) است، یعنی، اگر F\left(x\right)=f\left(g\left(x\right)\right)، پس مشتق F برابر است با مشتق f با توجه به u در مشتق g با توجه به x، یعنی، \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
\left(-\sin(10x^{1})\right)\times 10x^{1-1}
مشتق یک چند جمله‌ای، مجموع مشتق‌های عبارت‌های آن است. مشتق یک عبارت ثابت 0 است. مشتق ax^{n} برابر است با nax^{n-1}.
-10\sin(10x^{1})
ساده کنید.
-10\sin(10x)
برای هر عبارت t، t^{1}=t.