Eduki nagusira salto egin
Microsoft
|
Math Solver
Ebatzi
Praktikatu
Jolastu
Gaiak
Aljebra aurre-álgebra
Esan nahi du
Modua
Zatitzaile komunik handiena
Gutxieneko multiplo komuna
Eragiketen ordena
Zatikiak
Zatiki mistoak
Lehen faktoretza
Adierazleak
Erradikalak
Aljebra
Antzeko terminoak konbinatu
Aldagai bat ebaztea
Faktorea
Zabaldu
Zatikiak ebaluatu
Ekuazio linealak
Ekuazio koadratikoak
Desberdintasunak
Ekuazio-sistemak
Matrizeak
Trigonometria
Sinplifikatu
Ebaluatu
Grafikoak
Ekuazioak ebaztea
Kalkulua
Deribatuak
Integralak
Mugak
Aljebra-sarrerak
Trigonometriako sarrerak
Kalkulu-sarrerak
Matrikula-sarrerak
Ebatzi
Praktikatu
Jolastu
Gaiak
Aljebra aurre-álgebra
Esan nahi du
Modua
Zatitzaile komunik handiena
Gutxieneko multiplo komuna
Eragiketen ordena
Zatikiak
Zatiki mistoak
Lehen faktoretza
Adierazleak
Erradikalak
Aljebra
Antzeko terminoak konbinatu
Aldagai bat ebaztea
Faktorea
Zabaldu
Zatikiak ebaluatu
Ekuazio linealak
Ekuazio koadratikoak
Desberdintasunak
Ekuazio-sistemak
Matrizeak
Trigonometria
Sinplifikatu
Ebaluatu
Grafikoak
Ekuazioak ebaztea
Kalkulua
Deribatuak
Integralak
Mugak
Aljebra-sarrerak
Trigonometriako sarrerak
Kalkulu-sarrerak
Matrikula-sarrerak
Oinarrizko
aljebra
trigonometria
kalkulua
estatistika
Matrizeak
Karaktereak
Ebaluatu
3a^{2}
Diferentziatu a balioarekiko
6a
Azterketa
Algebra
antzeko 5 arazoen antzekoak:
\sqrt{3} \times \sqrt{3a^4}
Bilaketaren antzeko arazoak webgunean
Simplify? \displaystyle\sqrt{{8}}\times\sqrt{{{48}^{{3}}}}
https://socratic.org/questions/59e559a97c01496bf2104ce3
\displaystyle\sqrt{{8}}\times\sqrt{{{48}^{{3}}}}={384}\sqrt{{6}} Explanation: \displaystyle\sqrt{{8}}\times\sqrt{{{48}^{{3}}}} Because both terms are under a square root sign, we can ...
How do you simplify \displaystyle{5}\sqrt{{{9}{t}^{{2}}}}\times{5}\sqrt{{{2}{t}}} ?
https://socratic.org/questions/how-do-you-simplify-5sqrt-9t-2-times5-sqrt-2t
See a solution process below: Explanation: First, simplify the radical on the left: \displaystyle{\left({5}\times{3}{t}\right)}\times{5}\sqrt{{{2}{t}}}\Rightarrow \displaystyle{15}{t}\times{5}\sqrt{{{2}{t}}}\Rightarrow ...
How do you simplify \displaystyle{3}\sqrt{{{5}{c}}}\times\sqrt{{15}}^{{3}} ?
https://socratic.org/questions/how-do-you-simplify-3sqrt-5c-times-sqrt15-3
\displaystyle{225}\sqrt{{{3}{c}}} Explanation: \displaystyle{3}\sqrt{{{5}{c}}}\sqrt{{{15}}}^{{3}} First, we can simplify \displaystyle\sqrt{{{15}}}^{{3}} . \displaystyle\sqrt{{{15}}}^{{3}}=\sqrt{{15}}\cdot\sqrt{{15}}\cdot\sqrt{{15}}={15}\cdot\sqrt{{15}} ...
Simplifying indices with surds
https://math.stackexchange.com/questions/1986172/simplifying-indices-with-surds
One way is to note that \left( \sqrt t \right)^3=t^{\frac 32} and similarly for the other one. Then when you multiply terms you add exponents
range of m such that the equation |x^2-3x+2|=mx has 4 real answers.
https://math.stackexchange.com/questions/1259271/range-of-m-such-that-the-equation-x2-3x2-mx-has-4-real-answers
There is some positive value m such that y=mx is tangent to y=-(x^2-3x+2). This value must make 0 the discriminant of the equation x^2-3x+2=-mx That is, m^2-6m+1=0 The least root of ...
Prove that there exists irrational numbers p and q such that p^{q} is rational
https://math.stackexchange.com/q/2883337
The irrationality of \sqrt 2^{\sqrt 2} (in fact, its transcendence) follows immediately from the Gelfond Schneider Theorem . This was the issue that motivated Hilbert's 7^{th} Problem. The ...
Gehiago Artikuluak
Partekatu
Kopiatu
Kopiatu portapapeletan
Antzeko arazoak
\sqrt{40}
\sqrt{99a^3}
\sqrt{\frac{16}{25}}
\sqrt{3} \times \sqrt{3a^4}
\sqrt{\sqrt{256a^8}}
\sqrt{196}
Hasierara itzuli