Eduki nagusira salto egin
Faktorizatu
Tick mark Image
Ebaluatu
Tick mark Image
Grafikoa

Bilaketaren antzeko arazoak webgunean

Partekatu

a+b=5 ab=1\left(-24\right)=-24
Faktorizatu adierazpena taldekatzea erabilita. Lehenik, adierazpena y^{2}+ay+by-24 gisa idatzi behar da. a eta b aurkitzeko, ezarri ebatzi beharreko sistema.
-1,24 -2,12 -3,8 -4,6
ab negatiboa denez, a eta b balioek kontrako zeinuak dituzte. a+b positiboa denez, zenbaki positiboak negatiboak baino balio absolutu handiagoa du. Zerrendatu -24 biderkadura duten osokoen pare guztiak.
-1+24=23 -2+12=10 -3+8=5 -4+6=2
Kalkulatu pare bakoitzaren batura.
a=-3 b=8
5 batura duen parea da soluzioa.
\left(y^{2}-3y\right)+\left(8y-24\right)
Berridatzi y^{2}+5y-24 honela: \left(y^{2}-3y\right)+\left(8y-24\right).
y\left(y-3\right)+8\left(y-3\right)
Deskonposatu y lehen taldean, eta 8 bigarren taldean.
\left(y-3\right)\left(y+8\right)
Deskonposatu y-3 gai arrunta banaketa-propietatea erabiliz.
y^{2}+5y-24=0
Polinomio koadratikoa faktorizatzeko, eraldaketa hau erabil daiteke: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Bertan, x_{1} eta x_{2} dira ax^{2}+bx+c=0 ekuazio koadratikoaren soluzioak.
y=\frac{-5±\sqrt{5^{2}-4\left(-24\right)}}{2}
Formula koadratikoa erabiliz ebatz daitezke ax^{2}+bx+c=0 bezalako ekuazio guztiak: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Bi emaitza ditu formula koadratikoak: bata ± batuketa denean, eta bestea kenketa denean.
y=\frac{-5±\sqrt{25-4\left(-24\right)}}{2}
Egin 5 ber bi.
y=\frac{-5±\sqrt{25+96}}{2}
Egin -4 bider -24.
y=\frac{-5±\sqrt{121}}{2}
Gehitu 25 eta 96.
y=\frac{-5±11}{2}
Atera 121 balioaren erro karratua.
y=\frac{6}{2}
Orain, ebatzi y=\frac{-5±11}{2} ekuazioa ± plus denean. Gehitu -5 eta 11.
y=3
Zatitu 6 balioa 2 balioarekin.
y=-\frac{16}{2}
Orain, ebatzi y=\frac{-5±11}{2} ekuazioa ± minus denean. Egin 11 ken -5.
y=-8
Zatitu -16 balioa 2 balioarekin.
y^{2}+5y-24=\left(y-3\right)\left(y-\left(-8\right)\right)
Faktorizatu jatorrizko adierazpena ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) erabilita. Ordeztu 3 x_{1} faktorean, eta -8 x_{2} faktorean.
y^{2}+5y-24=\left(y-3\right)\left(y+8\right)
Sinplifikatu p-\left(-q\right) motako adierazpen guztiak p+q gisa.