Ebatzi: y
y=-\frac{\left(x-8\right)\left(x^{2}+4\right)}{8}
Grafikoa
Partekatu
Kopiatu portapapeletan
y=8-x+\left(\frac{1}{2}x-2\right)\left(2x-\frac{1}{4}x^{2}+1\right)-2\left(2-2x+\frac{1}{4}x^{2}-1\right)
Erabili banaketa-propietatea \frac{1}{2} eta x-4 biderkatzeko.
y=8-x+\frac{3}{2}x^{2}-\frac{1}{8}x^{3}-\frac{7}{2}x-2-2\left(2-2x+\frac{1}{4}x^{2}-1\right)
Erabili banaketa-propietatea \frac{1}{2}x-2 eta 2x-\frac{1}{4}x^{2}+1 biderkatzeko eta antzeko gaiak bateratzeko.
y=8-\frac{9}{2}x+\frac{3}{2}x^{2}-\frac{1}{8}x^{3}-2-2\left(2-2x+\frac{1}{4}x^{2}-1\right)
-\frac{9}{2}x lortzeko, konbinatu -x eta -\frac{7}{2}x.
y=6-\frac{9}{2}x+\frac{3}{2}x^{2}-\frac{1}{8}x^{3}-2\left(2-2x+\frac{1}{4}x^{2}-1\right)
6 lortzeko, 8 balioari kendu 2.
y=6-\frac{9}{2}x+\frac{3}{2}x^{2}-\frac{1}{8}x^{3}-2\left(1-2x+\frac{1}{4}x^{2}\right)
1 lortzeko, 2 balioari kendu 1.
y=6-\frac{9}{2}x+\frac{3}{2}x^{2}-\frac{1}{8}x^{3}-2+4x-\frac{1}{2}x^{2}
Erabili banaketa-propietatea -2 eta 1-2x+\frac{1}{4}x^{2} biderkatzeko.
y=4-\frac{9}{2}x+\frac{3}{2}x^{2}-\frac{1}{8}x^{3}+4x-\frac{1}{2}x^{2}
4 lortzeko, 6 balioari kendu 2.
y=4-\frac{1}{2}x+\frac{3}{2}x^{2}-\frac{1}{8}x^{3}-\frac{1}{2}x^{2}
-\frac{1}{2}x lortzeko, konbinatu -\frac{9}{2}x eta 4x.
y=4-\frac{1}{2}x+x^{2}-\frac{1}{8}x^{3}
x^{2} lortzeko, konbinatu \frac{3}{2}x^{2} eta -\frac{1}{2}x^{2}.
Adibideak
Ekuazio koadratikoa
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuazio lineala
y = 3x + 4
Aritmetika
699 * 533
Matrizea
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Aldibereko ekuazioa
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferentziazioa
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazioa
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Mugak
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}