Ebatzi: x (complex solution)
\left\{\begin{matrix}\\x=\ln(\sqrt{y}+1)+2\pi n_{1}i\text{, }n_{1}\in \mathrm{Z}\text{, }&\text{unconditionally}\\x=\ln(-\sqrt{y}+1)+2\pi n_{2}i\text{, }n_{2}\in \mathrm{Z}\text{, }&y\neq 1\end{matrix}\right.
Ebatzi: x
\left\{\begin{matrix}x=\ln(\sqrt{y}+1)\text{, }&y\geq 0\\x=\ln(-\sqrt{y}+1)\text{, }&y\geq 0\text{ and }y<1\end{matrix}\right.
Ebatzi: y
y=\left(e^{x}-1\right)^{2}
Grafikoa
Partekatu
Kopiatu portapapeletan
Adibideak
Ekuazio koadratikoa
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuazio lineala
y = 3x + 4
Aritmetika
699 * 533
Matrizea
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Aldibereko ekuazioa
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferentziazioa
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazioa
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Mugak
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}