Eduki nagusira salto egin
Ebatzi: x
Tick mark Image
Grafikoa

Bilaketaren antzeko arazoak webgunean

Partekatu

x^{2}-4x+7\left(x-4\right)=0
Erabili banaketa-propietatea x eta x-4 biderkatzeko.
x^{2}-4x+7x-28=0
Erabili banaketa-propietatea 7 eta x-4 biderkatzeko.
x^{2}+3x-28=0
3x lortzeko, konbinatu -4x eta 7x.
a+b=3 ab=-28
Ekuazioa ebazteko, faktorizatu x^{2}+3x-28 formula hau erabilita: x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). a eta b aurkitzeko, ezarri ebatzi beharreko sistema.
-1,28 -2,14 -4,7
ab negatiboa denez, a eta b balioek kontrako zeinuak dituzte. a+b positiboa denez, zenbaki positiboak negatiboak baino balio absolutu handiagoa du. Zerrendatu -28 biderkadura duten osokoen pare guztiak.
-1+28=27 -2+14=12 -4+7=3
Kalkulatu pare bakoitzaren batura.
a=-4 b=7
3 batura duen parea da soluzioa.
\left(x-4\right)\left(x+7\right)
Berridatzi faktorizatutako adierazpena (\left(x+a\right)\left(x+b\right)) lortutako balioak erabilita.
x=4 x=-7
Ekuazioaren soluzioak aurkitzeko, ebatzi x-4=0 eta x+7=0.
x^{2}-4x+7\left(x-4\right)=0
Erabili banaketa-propietatea x eta x-4 biderkatzeko.
x^{2}-4x+7x-28=0
Erabili banaketa-propietatea 7 eta x-4 biderkatzeko.
x^{2}+3x-28=0
3x lortzeko, konbinatu -4x eta 7x.
a+b=3 ab=1\left(-28\right)=-28
Ekuazioa ebazteko, faktorizatu ezkerraldea taldekatzearen bidez. Lehenik, x^{2}+ax+bx-28 gisa idatzi behar da ezkerraldea. a eta b aurkitzeko, ezarri ebatzi beharreko sistema.
-1,28 -2,14 -4,7
ab negatiboa denez, a eta b balioek kontrako zeinuak dituzte. a+b positiboa denez, zenbaki positiboak negatiboak baino balio absolutu handiagoa du. Zerrendatu -28 biderkadura duten osokoen pare guztiak.
-1+28=27 -2+14=12 -4+7=3
Kalkulatu pare bakoitzaren batura.
a=-4 b=7
3 batura duen parea da soluzioa.
\left(x^{2}-4x\right)+\left(7x-28\right)
Berridatzi x^{2}+3x-28 honela: \left(x^{2}-4x\right)+\left(7x-28\right).
x\left(x-4\right)+7\left(x-4\right)
Deskonposatu x lehen taldean, eta 7 bigarren taldean.
\left(x-4\right)\left(x+7\right)
Deskonposatu x-4 gai arrunta banaketa-propietatea erabiliz.
x=4 x=-7
Ekuazioaren soluzioak aurkitzeko, ebatzi x-4=0 eta x+7=0.
x^{2}-4x+7\left(x-4\right)=0
Erabili banaketa-propietatea x eta x-4 biderkatzeko.
x^{2}-4x+7x-28=0
Erabili banaketa-propietatea 7 eta x-4 biderkatzeko.
x^{2}+3x-28=0
3x lortzeko, konbinatu -4x eta 7x.
x=\frac{-3±\sqrt{3^{2}-4\left(-28\right)}}{2}
Estandarra da ekuazioaren forma: ax^{2}+bx+c=0. Ordeztu 1 balioa a balioarekin, 3 balioa b balioarekin, eta -28 balioa c balioarekin formula koadratikoan (\frac{-b±\sqrt{b^{2}-4ac}}{2a}).
x=\frac{-3±\sqrt{9-4\left(-28\right)}}{2}
Egin 3 ber bi.
x=\frac{-3±\sqrt{9+112}}{2}
Egin -4 bider -28.
x=\frac{-3±\sqrt{121}}{2}
Gehitu 9 eta 112.
x=\frac{-3±11}{2}
Atera 121 balioaren erro karratua.
x=\frac{8}{2}
Orain, ebatzi x=\frac{-3±11}{2} ekuazioa ± plus denean. Gehitu -3 eta 11.
x=4
Zatitu 8 balioa 2 balioarekin.
x=-\frac{14}{2}
Orain, ebatzi x=\frac{-3±11}{2} ekuazioa ± minus denean. Egin 11 ken -3.
x=-7
Zatitu -14 balioa 2 balioarekin.
x=4 x=-7
Ebatzi da ekuazioa.
x^{2}-4x+7\left(x-4\right)=0
Erabili banaketa-propietatea x eta x-4 biderkatzeko.
x^{2}-4x+7x-28=0
Erabili banaketa-propietatea 7 eta x-4 biderkatzeko.
x^{2}+3x-28=0
3x lortzeko, konbinatu -4x eta 7x.
x^{2}+3x=28
Gehitu 28 bi aldeetan. Edozein zenbaki gehi zero zenbaki hori bera da.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=28+\left(\frac{3}{2}\right)^{2}
Zatitu 3 (x gaiaren koefizientea) 2 balioarekin, eta \frac{3}{2} lortuko duzu. Ondoren, gehitu \frac{3}{2} balioaren karratua ekuazioaren bi aldeetan. Horrela, ekuazioaren ezkerreko zatia karratu perfektua izango da.
x^{2}+3x+\frac{9}{4}=28+\frac{9}{4}
Egin \frac{3}{2} ber bi, frakzioaren zenbakitzailea eta izendatzailea ber bi eginez.
x^{2}+3x+\frac{9}{4}=\frac{121}{4}
Gehitu 28 eta \frac{9}{4}.
\left(x+\frac{3}{2}\right)^{2}=\frac{121}{4}
Atera x^{2}+3x+\frac{9}{4} balioaren biderkagaiak. Orokorrean, x^{2}+bx+c karratu perfektua bada, \left(x+\frac{b}{2}\right)^{2} gisa ateratzen dira biderkagaiak.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{121}{4}}
Atera ekuazioaren bi aldeen erro karratua.
x+\frac{3}{2}=\frac{11}{2} x+\frac{3}{2}=-\frac{11}{2}
Sinplifikatu.
x=4 x=-7
Egin ken \frac{3}{2} ekuazioaren bi aldeetan.