Eduki nagusira salto egin
Math Solver will be retired on July 7, 2025. Solve math equations with Math Assistant in OneNote to help you reach solutions quickly.
Faktorizatu
Tick mark Image
Ebaluatu
Tick mark Image
Grafikoa

Bilaketaren antzeko arazoak webgunean

Partekatu

a+b=-4 ab=1\left(-12\right)=-12
Faktorizatu adierazpena taldekatzea erabilita. Lehenik, adierazpena x^{2}+ax+bx-12 gisa idatzi behar da. a eta b aurkitzeko, ezarri ebatzi beharreko sistema.
1,-12 2,-6 3,-4
ab negatiboa denez, a eta b balioek kontrako zeinuak dituzte. a+b negatiboa denez, zenbaki negatiboak positiboak baino balio absolutu handiagoa du. Zerrendatu -12 biderkadura duten osokoen pare guztiak.
1-12=-11 2-6=-4 3-4=-1
Kalkulatu pare bakoitzaren batura.
a=-6 b=2
-4 batura duen parea da soluzioa.
\left(x^{2}-6x\right)+\left(2x-12\right)
Berridatzi x^{2}-4x-12 honela: \left(x^{2}-6x\right)+\left(2x-12\right).
x\left(x-6\right)+2\left(x-6\right)
Deskonposatu x lehen taldean, eta 2 bigarren taldean.
\left(x-6\right)\left(x+2\right)
Deskonposatu x-6 gai arrunta banaketa-propietatea erabiliz.
x^{2}-4x-12=0
Polinomio koadratikoa faktorizatzeko, eraldaketa hau erabil daiteke: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Bertan, x_{1} eta x_{2} dira ax^{2}+bx+c=0 ekuazio koadratikoaren soluzioak.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-12\right)}}{2}
Formula koadratikoa erabiliz ebatz daitezke ax^{2}+bx+c=0 bezalako ekuazio guztiak: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Bi emaitza ditu formula koadratikoak: bata ± batuketa denean, eta bestea kenketa denean.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-12\right)}}{2}
Egin -4 ber bi.
x=\frac{-\left(-4\right)±\sqrt{16+48}}{2}
Egin -4 bider -12.
x=\frac{-\left(-4\right)±\sqrt{64}}{2}
Gehitu 16 eta 48.
x=\frac{-\left(-4\right)±8}{2}
Atera 64 balioaren erro karratua.
x=\frac{4±8}{2}
-4 zenbakiaren aurkakoa 4 da.
x=\frac{12}{2}
Orain, ebatzi x=\frac{4±8}{2} ekuazioa ± plus denean. Gehitu 4 eta 8.
x=6
Zatitu 12 balioa 2 balioarekin.
x=-\frac{4}{2}
Orain, ebatzi x=\frac{4±8}{2} ekuazioa ± minus denean. Egin 8 ken 4.
x=-2
Zatitu -4 balioa 2 balioarekin.
x^{2}-4x-12=\left(x-6\right)\left(x-\left(-2\right)\right)
Faktorizatu jatorrizko adierazpena ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) erabilita. Ordeztu 6 x_{1} faktorean, eta -2 x_{2} faktorean.
x^{2}-4x-12=\left(x-6\right)\left(x+2\right)
Sinplifikatu p-\left(-q\right) motako adierazpen guztiak p+q gisa.